File size: 5,294 Bytes
84db192
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import optuna
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, TensorDataset
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt
import os


script_path = os.path.abspath(__file__)
script_dir = os.path.dirname(script_path)
os.chdir(script_dir)


device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")


data = pd.read_csv('data.csv')


X = data.drop(columns=['OS.time']).values
y = data['OS.time'].values

scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)

X_train_tensor = torch.tensor(X_train, dtype=torch.float32).to(device)
y_train_tensor = torch.tensor(y_train, dtype=torch.float32).view(-1, 1).to(device)
X_test_tensor = torch.tensor(X_test, dtype=torch.float32).to(device)
y_test_tensor = torch.tensor(y_test, dtype=torch.float32).view(-1, 1).to(device)

train_dataset = TensorDataset(X_train_tensor, y_train_tensor)
test_dataset = TensorDataset(X_test_tensor, y_test_tensor)

train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=32, shuffle=False)


class SimpleNN(nn.Module):
    def __init__(self, input_dim, hidden_dim, num_layers, dropout_rate):
        super(SimpleNN, self).__init__()
        self.layers = nn.ModuleList()
        last_dim = input_dim
        for _ in range(num_layers):
            self.layers.append(nn.Linear(last_dim, hidden_dim))
            self.layers.append(nn.ReLU())
            self.layers.append(nn.Dropout(dropout_rate))
            last_dim = hidden_dim
        self.layers.append(nn.Linear(last_dim, 1))

    def forward(self, x):
        for layer in self.layers:
            x = layer(x)
        return x


def weights_init(m):
    if isinstance(m, nn.Linear):
        nn.init.kaiming_uniform_(m.weight)
        nn.init.zeros_(m.bias)


def objective(trial):
    
    num_layers = trial.suggest_int('num_layers', 2, 5)
    hidden_dim = trial.suggest_int('hidden_dim', 50, 200)
    dropout_rate = trial.suggest_float('dropout_rate', 0.2, 0.5)
    momentum = trial.suggest_float('momentum', 0.5, 0.9)
    num_epochs = trial.suggest_int('num_epochs', 6000, 10000)

    
    model = SimpleNN(X_train.shape[1], hidden_dim, num_layers, dropout_rate).to(device)
    model.apply(weights_init)

    criterion = nn.MSELoss()
    optimizer = optim.SGD(model.parameters(), lr=0.0001, momentum=momentum)

    
    for epoch in range(num_epochs):
        model.train()
        for inputs, targets in train_loader:
            optimizer.zero_grad()
            outputs = model(inputs)
            loss = criterion(outputs, targets)
            loss.backward()
            torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)
            optimizer.step()
        
        
        model.eval()
        test_loss = 0
        with torch.no_grad():
            for inputs, targets in test_loader:
                outputs = model(inputs)
                test_loss += criterion(outputs, targets).item() * inputs.size(0)
        
        test_loss /= len(test_loader.dataset)

        trial.report(test_loss, epoch)
        
        if trial.should_prune():
            raise optuna.exceptions.TrialPruned()
    
    return test_loss


study = optuna.create_study(direction='minimize')
study.optimize(objective, n_trials=200)


print(f"Best trial parameters: {study.best_trial.params}")
print(f"Best trial test loss: {study.best_trial.value}")


import optuna.visualization as vis

vis.plot_param_importances(study).show()

vis.plot_parallel_coordinate(study).show()

best_params = study.best_trial.params

model = SimpleNN(X_train.shape[1], best_params['hidden_dim'], best_params['num_layers'], best_params['dropout_rate']).to(device)
model.apply(weights_init)

criterion = nn.MSELoss()
optimizer = optim.SGD(model.parameters(), lr=0.0001, momentum=best_params['momentum'])

test_losses = []
for epoch in range(best_params['num_epochs']):
    model.train()
    for inputs, targets in train_loader:
        optimizer.zero_grad()
        outputs = model(inputs)
        loss = criterion(outputs, targets)
        loss.backward()
        torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)
        optimizer.step()
    
    model.eval()
    test_loss = 0
    with torch.no_grad():
        for inputs, targets in test_loader:
            outputs = model(inputs)
            test_loss += criterion(outputs, targets).item() * inputs.size(0)
    
    test_loss /= len(test_loader.dataset)

    if epoch % 100 == 0:
        test_losses.append(test_loss)
        print(f'Epoch {epoch+1}, Test Loss: {test_loss}')

print("Training completed with best hyperparameters.")


plt.figure(figsize=(10, 5))
plt.plot(range(1, len(test_losses) * 100, 100), test_losses, label='Test Loss')
plt.xlabel('Epoch')
plt.ylabel('Test Loss')
plt.title('Test Loss over Epochs')
plt.legend()
plt.show()