File size: 17,860 Bytes
a81a2c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 |
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
#pragma once
#include <stdint.h>
#include <cmath>
#include <cstring>
#include <limits>
namespace onnxruntime_float16 {
namespace detail {
enum class endian {
#if defined(_WIN32)
little = 0,
big = 1,
native = little,
#elif defined(__GNUC__) || defined(__clang__)
little = __ORDER_LITTLE_ENDIAN__,
big = __ORDER_BIG_ENDIAN__,
native = __BYTE_ORDER__,
#else
#error onnxruntime_float16::detail::endian is not implemented in this environment.
#endif
};
static_assert(
endian::native == endian::little || endian::native == endian::big,
"Only little-endian or big-endian native byte orders are supported.");
} // namespace detail
/// <summary>
/// Shared implementation between public and internal classes. CRTP pattern.
/// </summary>
template <class Derived>
struct Float16Impl {
protected:
/// <summary>
/// Converts from float to uint16_t float16 representation
/// </summary>
/// <param name="v"></param>
/// <returns></returns>
constexpr static uint16_t ToUint16Impl(float v) noexcept;
/// <summary>
/// Converts float16 to float
/// </summary>
/// <returns>float representation of float16 value</returns>
float ToFloatImpl() const noexcept;
/// <summary>
/// Creates an instance that represents absolute value.
/// </summary>
/// <returns>Absolute value</returns>
uint16_t AbsImpl() const noexcept {
return static_cast<uint16_t>(val & ~kSignMask);
}
/// <summary>
/// Creates a new instance with the sign flipped.
/// </summary>
/// <returns>Flipped sign instance</returns>
uint16_t NegateImpl() const noexcept {
return IsNaN() ? val : static_cast<uint16_t>(val ^ kSignMask);
}
public:
// uint16_t special values
static constexpr uint16_t kSignMask = 0x8000U;
static constexpr uint16_t kBiasedExponentMask = 0x7C00U;
static constexpr uint16_t kPositiveInfinityBits = 0x7C00U;
static constexpr uint16_t kNegativeInfinityBits = 0xFC00U;
static constexpr uint16_t kPositiveQNaNBits = 0x7E00U;
static constexpr uint16_t kNegativeQNaNBits = 0xFE00U;
static constexpr uint16_t kMaxValueBits = 0x7BFFU; // Largest normal number
static constexpr uint16_t kOneBits = 0x3C00U;
static constexpr uint16_t kMinusOneBits = 0xBC00U;
uint16_t val{0};
Float16Impl() = default;
/// <summary>
/// Checks if the value is negative
/// </summary>
/// <returns>true if negative</returns>
bool IsNegative() const noexcept {
return static_cast<int16_t>(val) < 0;
}
/// <summary>
/// Tests if the value is NaN
/// </summary>
/// <returns>true if NaN</returns>
bool IsNaN() const noexcept {
return AbsImpl() > kPositiveInfinityBits;
}
/// <summary>
/// Tests if the value is finite
/// </summary>
/// <returns>true if finite</returns>
bool IsFinite() const noexcept {
return AbsImpl() < kPositiveInfinityBits;
}
/// <summary>
/// Tests if the value represents positive infinity.
/// </summary>
/// <returns>true if positive infinity</returns>
bool IsPositiveInfinity() const noexcept {
return val == kPositiveInfinityBits;
}
/// <summary>
/// Tests if the value represents negative infinity
/// </summary>
/// <returns>true if negative infinity</returns>
bool IsNegativeInfinity() const noexcept {
return val == kNegativeInfinityBits;
}
/// <summary>
/// Tests if the value is either positive or negative infinity.
/// </summary>
/// <returns>True if absolute value is infinity</returns>
bool IsInfinity() const noexcept {
return AbsImpl() == kPositiveInfinityBits;
}
/// <summary>
/// Tests if the value is NaN or zero. Useful for comparisons.
/// </summary>
/// <returns>True if NaN or zero.</returns>
bool IsNaNOrZero() const noexcept {
auto abs = AbsImpl();
return (abs == 0 || abs > kPositiveInfinityBits);
}
/// <summary>
/// Tests if the value is normal (not zero, subnormal, infinite, or NaN).
/// </summary>
/// <returns>True if so</returns>
bool IsNormal() const noexcept {
auto abs = AbsImpl();
return (abs < kPositiveInfinityBits) // is finite
&& (abs != 0) // is not zero
&& ((abs & kBiasedExponentMask) != 0); // is not subnormal (has a non-zero exponent)
}
/// <summary>
/// Tests if the value is subnormal (denormal).
/// </summary>
/// <returns>True if so</returns>
bool IsSubnormal() const noexcept {
auto abs = AbsImpl();
return (abs < kPositiveInfinityBits) // is finite
&& (abs != 0) // is not zero
&& ((abs & kBiasedExponentMask) == 0); // is subnormal (has a zero exponent)
}
/// <summary>
/// Creates an instance that represents absolute value.
/// </summary>
/// <returns>Absolute value</returns>
Derived Abs() const noexcept { return Derived::FromBits(AbsImpl()); }
/// <summary>
/// Creates a new instance with the sign flipped.
/// </summary>
/// <returns>Flipped sign instance</returns>
Derived Negate() const noexcept { return Derived::FromBits(NegateImpl()); }
/// <summary>
/// IEEE defines that positive and negative zero are equal, this gives us a quick equality check
/// for two values by or'ing the private bits together and stripping the sign. They are both zero,
/// and therefore equivalent, if the resulting value is still zero.
/// </summary>
/// <param name="lhs">first value</param>
/// <param name="rhs">second value</param>
/// <returns>True if both arguments represent zero</returns>
static bool AreZero(const Float16Impl& lhs, const Float16Impl& rhs) noexcept {
return static_cast<uint16_t>((lhs.val | rhs.val) & ~kSignMask) == 0;
}
bool operator==(const Float16Impl& rhs) const noexcept {
if (IsNaN() || rhs.IsNaN()) {
// IEEE defines that NaN is not equal to anything, including itself.
return false;
}
return val == rhs.val;
}
bool operator!=(const Float16Impl& rhs) const noexcept { return !(*this == rhs); }
bool operator<(const Float16Impl& rhs) const noexcept {
if (IsNaN() || rhs.IsNaN()) {
// IEEE defines that NaN is unordered with respect to everything, including itself.
return false;
}
const bool left_is_negative = IsNegative();
if (left_is_negative != rhs.IsNegative()) {
// When the signs of left and right differ, we know that left is less than right if it is
// the negative value. The exception to this is if both values are zero, in which case IEEE
// says they should be equal, even if the signs differ.
return left_is_negative && !AreZero(*this, rhs);
}
return (val != rhs.val) && ((val < rhs.val) ^ left_is_negative);
}
};
// The following Float16_t conversions are based on the code from
// Eigen library.
// The conversion routines are Copyright (c) Fabian Giesen, 2016.
// The original license follows:
//
// Copyright (c) Fabian Giesen, 2016
// All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted.
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
namespace detail {
union float32_bits {
unsigned int u;
float f;
};
} // namespace detail
template <class Derived>
inline constexpr uint16_t Float16Impl<Derived>::ToUint16Impl(float v) noexcept {
detail::float32_bits f{};
f.f = v;
constexpr detail::float32_bits f32infty = {255 << 23};
constexpr detail::float32_bits f16max = {(127 + 16) << 23};
constexpr detail::float32_bits denorm_magic = {((127 - 15) + (23 - 10) + 1) << 23};
constexpr unsigned int sign_mask = 0x80000000u;
uint16_t val = static_cast<uint16_t>(0x0u);
unsigned int sign = f.u & sign_mask;
f.u ^= sign;
// NOTE all the integer compares in this function can be safely
// compiled into signed compares since all operands are below
// 0x80000000. Important if you want fast straight SSE2 code
// (since there's no unsigned PCMPGTD).
if (f.u >= f16max.u) { // result is Inf or NaN (all exponent bits set)
val = (f.u > f32infty.u) ? 0x7e00 : 0x7c00; // NaN->qNaN and Inf->Inf
} else { // (De)normalized number or zero
if (f.u < (113 << 23)) { // resulting FP16 is subnormal or zero
// use a magic value to align our 10 mantissa bits at the bottom of
// the float. as long as FP addition is round-to-nearest-even this
// just works.
f.f += denorm_magic.f;
// and one integer subtract of the bias later, we have our final float!
val = static_cast<uint16_t>(f.u - denorm_magic.u);
} else {
unsigned int mant_odd = (f.u >> 13) & 1; // resulting mantissa is odd
// update exponent, rounding bias part 1
// Equivalent to `f.u += ((unsigned int)(15 - 127) << 23) + 0xfff`, but
// without arithmetic overflow.
f.u += 0xc8000fffU;
// rounding bias part 2
f.u += mant_odd;
// take the bits!
val = static_cast<uint16_t>(f.u >> 13);
}
}
val |= static_cast<uint16_t>(sign >> 16);
return val;
}
template <class Derived>
inline float Float16Impl<Derived>::ToFloatImpl() const noexcept {
constexpr detail::float32_bits magic = {113 << 23};
constexpr unsigned int shifted_exp = 0x7c00 << 13; // exponent mask after shift
detail::float32_bits o{};
o.u = (val & 0x7fff) << 13; // exponent/mantissa bits
unsigned int exp = shifted_exp & o.u; // just the exponent
o.u += (127 - 15) << 23; // exponent adjust
// handle exponent special cases
if (exp == shifted_exp) { // Inf/NaN?
o.u += (128 - 16) << 23; // extra exp adjust
} else if (exp == 0) { // Zero/Denormal?
o.u += 1 << 23; // extra exp adjust
o.f -= magic.f; // re-normalize
}
// Attempt to workaround the Internal Compiler Error on ARM64
// for bitwise | operator, including std::bitset
#if (defined _MSC_VER) && (defined _M_ARM || defined _M_ARM64 || defined _M_ARM64EC)
if (IsNegative()) {
return -o.f;
}
#else
// original code:
o.u |= (val & 0x8000U) << 16U; // sign bit
#endif
return o.f;
}
/// Shared implementation between public and internal classes. CRTP pattern.
template <class Derived>
struct BFloat16Impl {
protected:
/// <summary>
/// Converts from float to uint16_t float16 representation
/// </summary>
/// <param name="v"></param>
/// <returns></returns>
static uint16_t ToUint16Impl(float v) noexcept;
/// <summary>
/// Converts bfloat16 to float
/// </summary>
/// <returns>float representation of bfloat16 value</returns>
float ToFloatImpl() const noexcept;
/// <summary>
/// Creates an instance that represents absolute value.
/// </summary>
/// <returns>Absolute value</returns>
uint16_t AbsImpl() const noexcept {
return static_cast<uint16_t>(val & ~kSignMask);
}
/// <summary>
/// Creates a new instance with the sign flipped.
/// </summary>
/// <returns>Flipped sign instance</returns>
uint16_t NegateImpl() const noexcept {
return IsNaN() ? val : static_cast<uint16_t>(val ^ kSignMask);
}
public:
// uint16_t special values
static constexpr uint16_t kSignMask = 0x8000U;
static constexpr uint16_t kBiasedExponentMask = 0x7F80U;
static constexpr uint16_t kPositiveInfinityBits = 0x7F80U;
static constexpr uint16_t kNegativeInfinityBits = 0xFF80U;
static constexpr uint16_t kPositiveQNaNBits = 0x7FC1U;
static constexpr uint16_t kNegativeQNaNBits = 0xFFC1U;
static constexpr uint16_t kMaxValueBits = 0x7F7FU;
static constexpr uint16_t kRoundToNearest = 0x7FFFU;
static constexpr uint16_t kOneBits = 0x3F80U;
static constexpr uint16_t kMinusOneBits = 0xBF80U;
uint16_t val{0};
BFloat16Impl() = default;
/// <summary>
/// Checks if the value is negative
/// </summary>
/// <returns>true if negative</returns>
bool IsNegative() const noexcept {
return static_cast<int16_t>(val) < 0;
}
/// <summary>
/// Tests if the value is NaN
/// </summary>
/// <returns>true if NaN</returns>
bool IsNaN() const noexcept {
return AbsImpl() > kPositiveInfinityBits;
}
/// <summary>
/// Tests if the value is finite
/// </summary>
/// <returns>true if finite</returns>
bool IsFinite() const noexcept {
return AbsImpl() < kPositiveInfinityBits;
}
/// <summary>
/// Tests if the value represents positive infinity.
/// </summary>
/// <returns>true if positive infinity</returns>
bool IsPositiveInfinity() const noexcept {
return val == kPositiveInfinityBits;
}
/// <summary>
/// Tests if the value represents negative infinity
/// </summary>
/// <returns>true if negative infinity</returns>
bool IsNegativeInfinity() const noexcept {
return val == kNegativeInfinityBits;
}
/// <summary>
/// Tests if the value is either positive or negative infinity.
/// </summary>
/// <returns>True if absolute value is infinity</returns>
bool IsInfinity() const noexcept {
return AbsImpl() == kPositiveInfinityBits;
}
/// <summary>
/// Tests if the value is NaN or zero. Useful for comparisons.
/// </summary>
/// <returns>True if NaN or zero.</returns>
bool IsNaNOrZero() const noexcept {
auto abs = AbsImpl();
return (abs == 0 || abs > kPositiveInfinityBits);
}
/// <summary>
/// Tests if the value is normal (not zero, subnormal, infinite, or NaN).
/// </summary>
/// <returns>True if so</returns>
bool IsNormal() const noexcept {
auto abs = AbsImpl();
return (abs < kPositiveInfinityBits) // is finite
&& (abs != 0) // is not zero
&& ((abs & kBiasedExponentMask) != 0); // is not subnormal (has a non-zero exponent)
}
/// <summary>
/// Tests if the value is subnormal (denormal).
/// </summary>
/// <returns>True if so</returns>
bool IsSubnormal() const noexcept {
auto abs = AbsImpl();
return (abs < kPositiveInfinityBits) // is finite
&& (abs != 0) // is not zero
&& ((abs & kBiasedExponentMask) == 0); // is subnormal (has a zero exponent)
}
/// <summary>
/// Creates an instance that represents absolute value.
/// </summary>
/// <returns>Absolute value</returns>
Derived Abs() const noexcept { return Derived::FromBits(AbsImpl()); }
/// <summary>
/// Creates a new instance with the sign flipped.
/// </summary>
/// <returns>Flipped sign instance</returns>
Derived Negate() const noexcept { return Derived::FromBits(NegateImpl()); }
/// <summary>
/// IEEE defines that positive and negative zero are equal, this gives us a quick equality check
/// for two values by or'ing the private bits together and stripping the sign. They are both zero,
/// and therefore equivalent, if the resulting value is still zero.
/// </summary>
/// <param name="lhs">first value</param>
/// <param name="rhs">second value</param>
/// <returns>True if both arguments represent zero</returns>
static bool AreZero(const BFloat16Impl& lhs, const BFloat16Impl& rhs) noexcept {
// IEEE defines that positive and negative zero are equal, this gives us a quick equality check
// for two values by or'ing the private bits together and stripping the sign. They are both zero,
// and therefore equivalent, if the resulting value is still zero.
return static_cast<uint16_t>((lhs.val | rhs.val) & ~kSignMask) == 0;
}
};
template <class Derived>
inline uint16_t BFloat16Impl<Derived>::ToUint16Impl(float v) noexcept {
uint16_t result;
if (std::isnan(v)) {
result = kPositiveQNaNBits;
} else {
auto get_msb_half = [](float fl) {
uint16_t result;
#ifdef __cpp_if_constexpr
if constexpr (detail::endian::native == detail::endian::little) {
#else
if (detail::endian::native == detail::endian::little) {
#endif
std::memcpy(&result, reinterpret_cast<char*>(&fl) + sizeof(uint16_t), sizeof(uint16_t));
} else {
std::memcpy(&result, &fl, sizeof(uint16_t));
}
return result;
};
uint16_t upper_bits = get_msb_half(v);
union {
uint32_t U32;
float F32;
};
F32 = v;
U32 += (upper_bits & 1) + kRoundToNearest;
result = get_msb_half(F32);
}
return result;
}
template <class Derived>
inline float BFloat16Impl<Derived>::ToFloatImpl() const noexcept {
if (IsNaN()) {
return std::numeric_limits<float>::quiet_NaN();
}
float result;
char* const first = reinterpret_cast<char*>(&result);
char* const second = first + sizeof(uint16_t);
#ifdef __cpp_if_constexpr
if constexpr (detail::endian::native == detail::endian::little) {
#else
if (detail::endian::native == detail::endian::little) {
#endif
std::memset(first, 0, sizeof(uint16_t));
std::memcpy(second, &val, sizeof(uint16_t));
} else {
std::memcpy(first, &val, sizeof(uint16_t));
std::memset(second, 0, sizeof(uint16_t));
}
return result;
}
} // namespace onnxruntime_float16
|