File size: 104,555 Bytes
ef69cb8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 |
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
// Summary: The Ort C++ API is a header only wrapper around the Ort C API.
//
// The C++ API simplifies usage by returning values directly instead of error codes, throwing exceptions on errors
// and automatically releasing resources in the destructors. The primary purpose of C++ API is exception safety so
// all the resources follow RAII and do not leak memory.
//
// Each of the C++ wrapper classes holds only a pointer to the C internal object. Treat them like smart pointers.
// To create an empty object, pass 'nullptr' to the constructor (for example, Env e{nullptr};). However, you can't use them
// until you assign an instance that actually holds an underlying object.
//
// For Ort objects only move assignment between objects is allowed, there are no copy constructors.
// Some objects have explicit 'Clone' methods for this purpose.
//
// ConstXXXX types are copyable since they do not own the underlying C object, so you can pass them to functions as arguments
// by value or by reference. ConstXXXX types are restricted to const only interfaces.
//
// UnownedXXXX are similar to ConstXXXX but also allow non-const interfaces.
//
// The lifetime of the corresponding owning object must eclipse the lifetimes of the ConstXXXX/UnownedXXXX types. They exists so you do not
// have to fallback to C types and the API with the usual pitfalls. In general, do not use C API from your C++ code.
#pragma once
#include "onnxruntime_c_api.h"
#include "onnxruntime_float16.h"
#include <cstddef>
#include <cstdio>
#include <array>
#include <memory>
#include <stdexcept>
#include <string>
#include <vector>
#include <unordered_map>
#include <utility>
#include <type_traits>
#ifdef ORT_NO_EXCEPTIONS
#include <iostream>
#endif
/** \brief All C++ Onnxruntime APIs are defined inside this namespace
*
*/
namespace Ort {
/** \brief All C++ methods that can fail will throw an exception of this type
*
* If <tt>ORT_NO_EXCEPTIONS</tt> is defined, then any error will result in a call to abort()
*/
struct Exception : std::exception {
Exception(std::string&& string, OrtErrorCode code) : message_{std::move(string)}, code_{code} {}
OrtErrorCode GetOrtErrorCode() const { return code_; }
const char* what() const noexcept override { return message_.c_str(); }
private:
std::string message_;
OrtErrorCode code_;
};
#ifdef ORT_NO_EXCEPTIONS
// The #ifndef is for the very special case where the user of this library wants to define their own way of handling errors.
// NOTE: This header expects control flow to not continue after calling ORT_CXX_API_THROW
#ifndef ORT_CXX_API_THROW
#define ORT_CXX_API_THROW(string, code) \
do { \
std::cerr << Ort::Exception(string, code) \
.what() \
<< std::endl; \
abort(); \
} while (false)
#endif
#else
#define ORT_CXX_API_THROW(string, code) \
throw Ort::Exception(string, code)
#endif
// This is used internally by the C++ API. This class holds the global variable that points to the OrtApi,
// it's in a template so that we can define a global variable in a header and make
// it transparent to the users of the API.
template <typename T>
struct Global {
static const OrtApi* api_;
};
// If macro ORT_API_MANUAL_INIT is defined, no static initialization will be performed. Instead, user must call InitApi() before using it.
template <typename T>
#ifdef ORT_API_MANUAL_INIT
const OrtApi* Global<T>::api_{};
inline void InitApi() noexcept { Global<void>::api_ = OrtGetApiBase()->GetApi(ORT_API_VERSION); }
// Used by custom operator libraries that are not linked to onnxruntime. Sets the global API object, which is
// required by C++ APIs.
//
// Example mycustomop.cc:
//
// #define ORT_API_MANUAL_INIT
// #include <onnxruntime_cxx_api.h>
// #undef ORT_API_MANUAL_INIT
//
// OrtStatus* ORT_API_CALL RegisterCustomOps(OrtSessionOptions* options, const OrtApiBase* api_base) {
// Ort::InitApi(api_base->GetApi(ORT_API_VERSION));
// // ...
// }
//
inline void InitApi(const OrtApi* api) noexcept { Global<void>::api_ = api; }
#else
#if defined(_MSC_VER) && !defined(__clang__)
#pragma warning(push)
// "Global initializer calls a non-constexpr function." Therefore you can't use ORT APIs in the other global initializers.
// Please define ORT_API_MANUAL_INIT if it conerns you.
#pragma warning(disable : 26426)
#endif
const OrtApi* Global<T>::api_ = OrtGetApiBase()->GetApi(ORT_API_VERSION);
#if defined(_MSC_VER) && !defined(__clang__)
#pragma warning(pop)
#endif
#endif
/// This returns a reference to the OrtApi interface in use
inline const OrtApi& GetApi() noexcept { return *Global<void>::api_; }
/// <summary>
/// This function returns the onnxruntime version string
/// </summary>
/// <returns>version string major.minor.rev</returns>
std::string GetVersionString();
/// <summary>
/// This function returns the onnxruntime build information: including git branch,
/// git commit id, build type(Debug/Release/RelWithDebInfo) and cmake cpp flags.
/// </summary>
/// <returns>string</returns>
std::string GetBuildInfoString();
/// <summary>
/// This is a C++ wrapper for OrtApi::GetAvailableProviders() and
/// returns a vector of strings representing the available execution providers.
/// </summary>
/// <returns>vector of strings</returns>
std::vector<std::string> GetAvailableProviders();
/** \brief IEEE 754 half-precision floating point data type
*
* \details This struct is used for converting float to float16 and back
* so the user could feed inputs and fetch outputs using these type.
*
* The size of the structure should align with uint16_t and one can freely cast
* uint16_t buffers to/from Ort::Float16_t to feed and retrieve data.
*
* \code{.unparsed}
* // This example demonstrates converion from float to float16
* constexpr float values[] = {1.f, 2.f, 3.f, 4.f, 5.f};
* std::vector<Ort::Float16_t> fp16_values;
* fp16_values.reserve(std::size(values));
* std::transform(std::begin(values), std::end(values), std::back_inserter(fp16_values),
* [](float value) { return Ort::Float16_t(value); });
*
* \endcode
*/
struct Float16_t : onnxruntime_float16::Float16Impl<Float16_t> {
private:
/// <summary>
/// Constructor from a 16-bit representation of a float16 value
/// No conversion is done here.
/// </summary>
/// <param name="v">16-bit representation</param>
constexpr explicit Float16_t(uint16_t v) noexcept { val = v; }
public:
using Base = onnxruntime_float16::Float16Impl<Float16_t>;
/// <summary>
/// Default constructor
/// </summary>
Float16_t() = default;
/// <summary>
/// Explicit conversion to uint16_t representation of float16.
/// </summary>
/// <param name="v">uint16_t bit representation of float16</param>
/// <returns>new instance of Float16_t</returns>
constexpr static Float16_t FromBits(uint16_t v) noexcept { return Float16_t(v); }
/// <summary>
/// __ctor from float. Float is converted into float16 16-bit representation.
/// </summary>
/// <param name="v">float value</param>
explicit Float16_t(float v) noexcept { val = Base::ToUint16Impl(v); }
/// <summary>
/// Converts float16 to float
/// </summary>
/// <returns>float representation of float16 value</returns>
float ToFloat() const noexcept { return Base::ToFloatImpl(); }
/// <summary>
/// Checks if the value is negative
/// </summary>
/// <returns>true if negative</returns>
using Base::IsNegative;
/// <summary>
/// Tests if the value is NaN
/// </summary>
/// <returns>true if NaN</returns>
using Base::IsNaN;
/// <summary>
/// Tests if the value is finite
/// </summary>
/// <returns>true if finite</returns>
using Base::IsFinite;
/// <summary>
/// Tests if the value represents positive infinity.
/// </summary>
/// <returns>true if positive infinity</returns>
using Base::IsPositiveInfinity;
/// <summary>
/// Tests if the value represents negative infinity
/// </summary>
/// <returns>true if negative infinity</returns>
using Base::IsNegativeInfinity;
/// <summary>
/// Tests if the value is either positive or negative infinity.
/// </summary>
/// <returns>True if absolute value is infinity</returns>
using Base::IsInfinity;
/// <summary>
/// Tests if the value is NaN or zero. Useful for comparisons.
/// </summary>
/// <returns>True if NaN or zero.</returns>
using Base::IsNaNOrZero;
/// <summary>
/// Tests if the value is normal (not zero, subnormal, infinite, or NaN).
/// </summary>
/// <returns>True if so</returns>
using Base::IsNormal;
/// <summary>
/// Tests if the value is subnormal (denormal).
/// </summary>
/// <returns>True if so</returns>
using Base::IsSubnormal;
/// <summary>
/// Creates an instance that represents absolute value.
/// </summary>
/// <returns>Absolute value</returns>
using Base::Abs;
/// <summary>
/// Creates a new instance with the sign flipped.
/// </summary>
/// <returns>Flipped sign instance</returns>
using Base::Negate;
/// <summary>
/// IEEE defines that positive and negative zero are equal, this gives us a quick equality check
/// for two values by or'ing the private bits together and stripping the sign. They are both zero,
/// and therefore equivalent, if the resulting value is still zero.
/// </summary>
/// <param name="lhs">first value</param>
/// <param name="rhs">second value</param>
/// <returns>True if both arguments represent zero</returns>
using Base::AreZero;
/// <summary>
/// User defined conversion operator. Converts Float16_t to float.
/// </summary>
explicit operator float() const noexcept { return ToFloat(); }
using Base::operator==;
using Base::operator!=;
using Base::operator<;
};
static_assert(sizeof(Float16_t) == sizeof(uint16_t), "Sizes must match");
/** \brief bfloat16 (Brain Floating Point) data type
*
* \details This struct is used for converting float to bfloat16 and back
* so the user could feed inputs and fetch outputs using these type.
*
* The size of the structure should align with uint16_t and one can freely cast
* uint16_t buffers to/from Ort::BFloat16_t to feed and retrieve data.
*
* \code{.unparsed}
* // This example demonstrates converion from float to float16
* constexpr float values[] = {1.f, 2.f, 3.f, 4.f, 5.f};
* std::vector<Ort::BFloat16_t> bfp16_values;
* bfp16_values.reserve(std::size(values));
* std::transform(std::begin(values), std::end(values), std::back_inserter(bfp16_values),
* [](float value) { return Ort::BFloat16_t(value); });
*
* \endcode
*/
struct BFloat16_t : onnxruntime_float16::BFloat16Impl<BFloat16_t> {
private:
/// <summary>
/// Constructor from a uint16_t representation of bfloat16
/// used in FromBits() to escape overload resolution issue with
/// constructor from float.
/// No conversion is done.
/// </summary>
/// <param name="v">16-bit bfloat16 value</param>
constexpr explicit BFloat16_t(uint16_t v) noexcept { val = v; }
public:
using Base = onnxruntime_float16::BFloat16Impl<BFloat16_t>;
BFloat16_t() = default;
/// <summary>
/// Explicit conversion to uint16_t representation of bfloat16.
/// </summary>
/// <param name="v">uint16_t bit representation of bfloat16</param>
/// <returns>new instance of BFloat16_t</returns>
static constexpr BFloat16_t FromBits(uint16_t v) noexcept { return BFloat16_t(v); }
/// <summary>
/// __ctor from float. Float is converted into bfloat16 16-bit representation.
/// </summary>
/// <param name="v">float value</param>
explicit BFloat16_t(float v) noexcept { val = Base::ToUint16Impl(v); }
/// <summary>
/// Converts bfloat16 to float
/// </summary>
/// <returns>float representation of bfloat16 value</returns>
float ToFloat() const noexcept { return Base::ToFloatImpl(); }
/// <summary>
/// Checks if the value is negative
/// </summary>
/// <returns>true if negative</returns>
using Base::IsNegative;
/// <summary>
/// Tests if the value is NaN
/// </summary>
/// <returns>true if NaN</returns>
using Base::IsNaN;
/// <summary>
/// Tests if the value is finite
/// </summary>
/// <returns>true if finite</returns>
using Base::IsFinite;
/// <summary>
/// Tests if the value represents positive infinity.
/// </summary>
/// <returns>true if positive infinity</returns>
using Base::IsPositiveInfinity;
/// <summary>
/// Tests if the value represents negative infinity
/// </summary>
/// <returns>true if negative infinity</returns>
using Base::IsNegativeInfinity;
/// <summary>
/// Tests if the value is either positive or negative infinity.
/// </summary>
/// <returns>True if absolute value is infinity</returns>
using Base::IsInfinity;
/// <summary>
/// Tests if the value is NaN or zero. Useful for comparisons.
/// </summary>
/// <returns>True if NaN or zero.</returns>
using Base::IsNaNOrZero;
/// <summary>
/// Tests if the value is normal (not zero, subnormal, infinite, or NaN).
/// </summary>
/// <returns>True if so</returns>
using Base::IsNormal;
/// <summary>
/// Tests if the value is subnormal (denormal).
/// </summary>
/// <returns>True if so</returns>
using Base::IsSubnormal;
/// <summary>
/// Creates an instance that represents absolute value.
/// </summary>
/// <returns>Absolute value</returns>
using Base::Abs;
/// <summary>
/// Creates a new instance with the sign flipped.
/// </summary>
/// <returns>Flipped sign instance</returns>
using Base::Negate;
/// <summary>
/// IEEE defines that positive and negative zero are equal, this gives us a quick equality check
/// for two values by or'ing the private bits together and stripping the sign. They are both zero,
/// and therefore equivalent, if the resulting value is still zero.
/// </summary>
/// <param name="lhs">first value</param>
/// <param name="rhs">second value</param>
/// <returns>True if both arguments represent zero</returns>
using Base::AreZero;
/// <summary>
/// User defined conversion operator. Converts BFloat16_t to float.
/// </summary>
explicit operator float() const noexcept { return ToFloat(); }
// We do not have an inherited impl for the below operators
// as the internal class implements them a little differently
bool operator==(const BFloat16_t& rhs) const noexcept;
bool operator!=(const BFloat16_t& rhs) const noexcept { return !(*this == rhs); }
bool operator<(const BFloat16_t& rhs) const noexcept;
};
static_assert(sizeof(BFloat16_t) == sizeof(uint16_t), "Sizes must match");
/** \brief float8e4m3fn (Float8 Floating Point) data type
* \details It is necessary for type dispatching to make use of C++ API
* The type is implicitly convertible to/from uint8_t.
* See https://onnx.ai/onnx/technical/float8.html for further details.
*/
struct Float8E4M3FN_t {
uint8_t value;
constexpr Float8E4M3FN_t() noexcept : value(0) {}
constexpr Float8E4M3FN_t(uint8_t v) noexcept : value(v) {}
constexpr operator uint8_t() const noexcept { return value; }
// nan values are treated like any other value for operator ==, !=
constexpr bool operator==(const Float8E4M3FN_t& rhs) const noexcept { return value == rhs.value; };
constexpr bool operator!=(const Float8E4M3FN_t& rhs) const noexcept { return value != rhs.value; };
};
static_assert(sizeof(Float8E4M3FN_t) == sizeof(uint8_t), "Sizes must match");
/** \brief float8e4m3fnuz (Float8 Floating Point) data type
* \details It is necessary for type dispatching to make use of C++ API
* The type is implicitly convertible to/from uint8_t.
* See https://onnx.ai/onnx/technical/float8.html for further details.
*/
struct Float8E4M3FNUZ_t {
uint8_t value;
constexpr Float8E4M3FNUZ_t() noexcept : value(0) {}
constexpr Float8E4M3FNUZ_t(uint8_t v) noexcept : value(v) {}
constexpr operator uint8_t() const noexcept { return value; }
// nan values are treated like any other value for operator ==, !=
constexpr bool operator==(const Float8E4M3FNUZ_t& rhs) const noexcept { return value == rhs.value; };
constexpr bool operator!=(const Float8E4M3FNUZ_t& rhs) const noexcept { return value != rhs.value; };
};
static_assert(sizeof(Float8E4M3FNUZ_t) == sizeof(uint8_t), "Sizes must match");
/** \brief float8e5m2 (Float8 Floating Point) data type
* \details It is necessary for type dispatching to make use of C++ API
* The type is implicitly convertible to/from uint8_t.
* See https://onnx.ai/onnx/technical/float8.html for further details.
*/
struct Float8E5M2_t {
uint8_t value;
constexpr Float8E5M2_t() noexcept : value(0) {}
constexpr Float8E5M2_t(uint8_t v) noexcept : value(v) {}
constexpr operator uint8_t() const noexcept { return value; }
// nan values are treated like any other value for operator ==, !=
constexpr bool operator==(const Float8E5M2_t& rhs) const noexcept { return value == rhs.value; };
constexpr bool operator!=(const Float8E5M2_t& rhs) const noexcept { return value != rhs.value; };
};
static_assert(sizeof(Float8E5M2_t) == sizeof(uint8_t), "Sizes must match");
/** \brief float8e5m2fnuz (Float8 Floating Point) data type
* \details It is necessary for type dispatching to make use of C++ API
* The type is implicitly convertible to/from uint8_t.
* See https://onnx.ai/onnx/technical/float8.html for further details.
*/
struct Float8E5M2FNUZ_t {
uint8_t value;
constexpr Float8E5M2FNUZ_t() noexcept : value(0) {}
constexpr Float8E5M2FNUZ_t(uint8_t v) noexcept : value(v) {}
constexpr operator uint8_t() const noexcept { return value; }
// nan values are treated like any other value for operator ==, !=
constexpr bool operator==(const Float8E5M2FNUZ_t& rhs) const noexcept { return value == rhs.value; };
constexpr bool operator!=(const Float8E5M2FNUZ_t& rhs) const noexcept { return value != rhs.value; };
};
static_assert(sizeof(Float8E5M2FNUZ_t) == sizeof(uint8_t), "Sizes must match");
namespace detail {
// This is used internally by the C++ API. This macro is to make it easy to generate overloaded methods for all of the various OrtRelease* functions for every Ort* type
// This can't be done in the C API since C doesn't have function overloading.
#define ORT_DEFINE_RELEASE(NAME) \
inline void OrtRelease(Ort##NAME* ptr) { GetApi().Release##NAME(ptr); }
ORT_DEFINE_RELEASE(Allocator);
ORT_DEFINE_RELEASE(MemoryInfo);
ORT_DEFINE_RELEASE(CustomOpDomain);
ORT_DEFINE_RELEASE(ThreadingOptions);
ORT_DEFINE_RELEASE(Env);
ORT_DEFINE_RELEASE(RunOptions);
ORT_DEFINE_RELEASE(Session);
ORT_DEFINE_RELEASE(SessionOptions);
ORT_DEFINE_RELEASE(TensorTypeAndShapeInfo);
ORT_DEFINE_RELEASE(SequenceTypeInfo);
ORT_DEFINE_RELEASE(MapTypeInfo);
ORT_DEFINE_RELEASE(TypeInfo);
ORT_DEFINE_RELEASE(Value);
ORT_DEFINE_RELEASE(ModelMetadata);
ORT_DEFINE_RELEASE(IoBinding);
ORT_DEFINE_RELEASE(ArenaCfg);
ORT_DEFINE_RELEASE(Status);
ORT_DEFINE_RELEASE(OpAttr);
ORT_DEFINE_RELEASE(Op);
ORT_DEFINE_RELEASE(KernelInfo);
#undef ORT_DEFINE_RELEASE
/** \brief This is a tagging template type. Use it with Base<T> to indicate that the C++ interface object
* has no ownership of the underlying C object.
*/
template <typename T>
struct Unowned {
using Type = T;
};
/** \brief Used internally by the C++ API. C++ wrapper types inherit from this.
* This is a zero cost abstraction to wrap the C API objects and delete them on destruction.
*
* All of the C++ classes
* a) serve as containers for pointers to objects that are created by the underlying C API.
* Their size is just a pointer size, no need to dynamically allocate them. Use them by value.
* b) Each of struct XXXX, XXX instances function as smart pointers to the underlying C API objects.
* they would release objects owned automatically when going out of scope, they are move-only.
* c) ConstXXXX and UnownedXXX structs function as non-owning, copyable containers for the above pointers.
* ConstXXXX allow calling const interfaces only. They give access to objects that are owned by somebody else
* such as Onnxruntime or instances of XXXX classes.
* d) serve convenient interfaces that return C++ objects and further enhance exception and type safety so they can be used
* in C++ code.
*
*/
/// <summary>
/// This is a non-const pointer holder that is move-only. Disposes of the pointer on destruction.
/// </summary>
template <typename T>
struct Base {
using contained_type = T;
constexpr Base() = default;
constexpr explicit Base(contained_type* p) noexcept : p_{p} {}
~Base() { OrtRelease(p_); }
Base(const Base&) = delete;
Base& operator=(const Base&) = delete;
Base(Base&& v) noexcept : p_{v.p_} { v.p_ = nullptr; }
Base& operator=(Base&& v) noexcept {
OrtRelease(p_);
p_ = v.release();
return *this;
}
constexpr operator contained_type*() const noexcept { return p_; }
/// \brief Relinquishes ownership of the contained C object pointer
/// The underlying object is not destroyed
contained_type* release() {
T* p = p_;
p_ = nullptr;
return p;
}
protected:
contained_type* p_{};
};
// Undefined. For const types use Base<Unowned<const T>>
template <typename T>
struct Base<const T>;
/// <summary>
/// Covers unowned pointers owned by either the ORT
/// or some other instance of CPP wrappers.
/// Used for ConstXXX and UnownedXXXX types that are copyable.
/// Also convenient to wrap raw OrtXX pointers .
/// </summary>
/// <typeparam name="T"></typeparam>
template <typename T>
struct Base<Unowned<T>> {
using contained_type = typename Unowned<T>::Type;
constexpr Base() = default;
constexpr explicit Base(contained_type* p) noexcept : p_{p} {}
~Base() = default;
Base(const Base&) = default;
Base& operator=(const Base&) = default;
Base(Base&& v) noexcept : p_{v.p_} { v.p_ = nullptr; }
Base& operator=(Base&& v) noexcept {
p_ = nullptr;
std::swap(p_, v.p_);
return *this;
}
constexpr operator contained_type*() const noexcept { return p_; }
protected:
contained_type* p_{};
};
// Light functor to release memory with OrtAllocator
struct AllocatedFree {
OrtAllocator* allocator_;
explicit AllocatedFree(OrtAllocator* allocator)
: allocator_(allocator) {}
void operator()(void* ptr) const {
if (ptr) allocator_->Free(allocator_, ptr);
}
};
} // namespace detail
struct AllocatorWithDefaultOptions;
struct Env;
struct TypeInfo;
struct Value;
struct ModelMetadata;
/** \brief unique_ptr typedef used to own strings allocated by OrtAllocators
* and release them at the end of the scope. The lifespan of the given allocator
* must eclipse the lifespan of AllocatedStringPtr instance
*/
using AllocatedStringPtr = std::unique_ptr<char, detail::AllocatedFree>;
/** \brief The Status that holds ownership of OrtStatus received from C API
* Use it to safely destroy OrtStatus* returned from the C API. Use appropriate
* constructors to construct an instance of a Status object from exceptions.
*/
struct Status : detail::Base<OrtStatus> {
explicit Status(std::nullptr_t) noexcept {} ///< Create an empty object, must be assigned a valid one to be used
explicit Status(OrtStatus* status) noexcept; ///< Takes ownership of OrtStatus instance returned from the C API.
explicit Status(const Exception&) noexcept; ///< Creates status instance out of exception
explicit Status(const std::exception&) noexcept; ///< Creates status instance out of exception
Status(const char* message, OrtErrorCode code) noexcept; ///< Creates status instance out of null-terminated string message.
std::string GetErrorMessage() const;
OrtErrorCode GetErrorCode() const;
bool IsOK() const noexcept; ///< Returns true if instance represents an OK (non-error) status.
};
/** \brief The ThreadingOptions
*
* The ThreadingOptions used for set global threadpools' options of The Env.
*/
struct ThreadingOptions : detail::Base<OrtThreadingOptions> {
/// \brief Wraps OrtApi::CreateThreadingOptions
ThreadingOptions();
/// \brief Wraps OrtApi::SetGlobalIntraOpNumThreads
ThreadingOptions& SetGlobalIntraOpNumThreads(int intra_op_num_threads);
/// \brief Wraps OrtApi::SetGlobalInterOpNumThreads
ThreadingOptions& SetGlobalInterOpNumThreads(int inter_op_num_threads);
/// \brief Wraps OrtApi::SetGlobalSpinControl
ThreadingOptions& SetGlobalSpinControl(int allow_spinning);
/// \brief Wraps OrtApi::SetGlobalDenormalAsZero
ThreadingOptions& SetGlobalDenormalAsZero();
/// \brief Wraps OrtApi::SetGlobalCustomCreateThreadFn
ThreadingOptions& SetGlobalCustomCreateThreadFn(OrtCustomCreateThreadFn ort_custom_create_thread_fn);
/// \brief Wraps OrtApi::SetGlobalCustomThreadCreationOptions
ThreadingOptions& SetGlobalCustomThreadCreationOptions(void* ort_custom_thread_creation_options);
/// \brief Wraps OrtApi::SetGlobalCustomJoinThreadFn
ThreadingOptions& SetGlobalCustomJoinThreadFn(OrtCustomJoinThreadFn ort_custom_join_thread_fn);
};
/** \brief The Env (Environment)
*
* The Env holds the logging state used by all other objects.
* <b>Note:</b> One Env must be created before using any other Onnxruntime functionality
*/
struct Env : detail::Base<OrtEnv> {
explicit Env(std::nullptr_t) {} ///< Create an empty Env object, must be assigned a valid one to be used
/// \brief Wraps OrtApi::CreateEnv
Env(OrtLoggingLevel logging_level = ORT_LOGGING_LEVEL_WARNING, _In_ const char* logid = "");
/// \brief Wraps OrtApi::CreateEnvWithCustomLogger
Env(OrtLoggingLevel logging_level, const char* logid, OrtLoggingFunction logging_function, void* logger_param);
/// \brief Wraps OrtApi::CreateEnvWithGlobalThreadPools
Env(const OrtThreadingOptions* tp_options, OrtLoggingLevel logging_level = ORT_LOGGING_LEVEL_WARNING, _In_ const char* logid = "");
/// \brief Wraps OrtApi::CreateEnvWithCustomLoggerAndGlobalThreadPools
Env(const OrtThreadingOptions* tp_options, OrtLoggingFunction logging_function, void* logger_param,
OrtLoggingLevel logging_level = ORT_LOGGING_LEVEL_WARNING, _In_ const char* logid = "");
/// \brief C Interop Helper
explicit Env(OrtEnv* p) : Base<OrtEnv>{p} {}
Env& EnableTelemetryEvents(); ///< Wraps OrtApi::EnableTelemetryEvents
Env& DisableTelemetryEvents(); ///< Wraps OrtApi::DisableTelemetryEvents
Env& UpdateEnvWithCustomLogLevel(OrtLoggingLevel log_severity_level); ///< Wraps OrtApi::UpdateEnvWithCustomLogLevel
Env& CreateAndRegisterAllocator(const OrtMemoryInfo* mem_info, const OrtArenaCfg* arena_cfg); ///< Wraps OrtApi::CreateAndRegisterAllocator
Env& CreateAndRegisterAllocatorV2(const std::string& provider_type, const OrtMemoryInfo* mem_info, const std::unordered_map<std::string, std::string>& options, const OrtArenaCfg* arena_cfg); ///< Wraps OrtApi::CreateAndRegisterAllocatorV2
};
/** \brief Custom Op Domain
*
*/
struct CustomOpDomain : detail::Base<OrtCustomOpDomain> {
explicit CustomOpDomain(std::nullptr_t) {} ///< Create an empty CustomOpDomain object, must be assigned a valid one to be used
/// \brief Wraps OrtApi::CreateCustomOpDomain
explicit CustomOpDomain(const char* domain);
// This does not take ownership of the op, simply registers it.
void Add(const OrtCustomOp* op); ///< Wraps CustomOpDomain_Add
};
/** \brief RunOptions
*
*/
struct RunOptions : detail::Base<OrtRunOptions> {
explicit RunOptions(std::nullptr_t) {} ///< Create an empty RunOptions object, must be assigned a valid one to be used
RunOptions(); ///< Wraps OrtApi::CreateRunOptions
RunOptions& SetRunLogVerbosityLevel(int); ///< Wraps OrtApi::RunOptionsSetRunLogVerbosityLevel
int GetRunLogVerbosityLevel() const; ///< Wraps OrtApi::RunOptionsGetRunLogVerbosityLevel
RunOptions& SetRunLogSeverityLevel(int); ///< Wraps OrtApi::RunOptionsSetRunLogSeverityLevel
int GetRunLogSeverityLevel() const; ///< Wraps OrtApi::RunOptionsGetRunLogSeverityLevel
RunOptions& SetRunTag(const char* run_tag); ///< wraps OrtApi::RunOptionsSetRunTag
const char* GetRunTag() const; ///< Wraps OrtApi::RunOptionsGetRunTag
RunOptions& AddConfigEntry(const char* config_key, const char* config_value); ///< Wraps OrtApi::AddRunConfigEntry
/** \brief Terminates all currently executing Session::Run calls that were made using this RunOptions instance
*
* If a currently executing session needs to be force terminated, this can be called from another thread to force it to fail with an error
* Wraps OrtApi::RunOptionsSetTerminate
*/
RunOptions& SetTerminate();
/** \brief Clears the terminate flag so this RunOptions instance can be used in a new Session::Run call without it instantly terminating
*
* Wraps OrtApi::RunOptionsUnsetTerminate
*/
RunOptions& UnsetTerminate();
};
namespace detail {
// Utility function that returns a SessionOption config entry key for a specific custom operator.
// Ex: custom_op.[custom_op_name].[config]
std::string MakeCustomOpConfigEntryKey(const char* custom_op_name, const char* config);
} // namespace detail
/// <summary>
/// Class that represents session configuration entries for one or more custom operators.
///
/// Example:
/// Ort::CustomOpConfigs op_configs;
/// op_configs.AddConfig("my_custom_op", "device_type", "CPU");
///
/// Passed to Ort::SessionOptions::RegisterCustomOpsLibrary.
/// </summary>
struct CustomOpConfigs {
CustomOpConfigs() = default;
~CustomOpConfigs() = default;
CustomOpConfigs(const CustomOpConfigs&) = default;
CustomOpConfigs& operator=(const CustomOpConfigs&) = default;
CustomOpConfigs(CustomOpConfigs&& o) = default;
CustomOpConfigs& operator=(CustomOpConfigs&& o) = default;
/** \brief Adds a session configuration entry/value for a specific custom operator.
*
* \param custom_op_name The name of the custom operator for which to add a configuration entry.
* Must match the name returned by the CustomOp's GetName() method.
* \param config_key The name of the configuration entry.
* \param config_value The value of the configuration entry.
* \return A reference to this object to enable call chaining.
*/
CustomOpConfigs& AddConfig(const char* custom_op_name, const char* config_key, const char* config_value);
/** \brief Returns a flattened map of custom operator configuration entries and their values.
*
* The keys has been flattened to include both the custom operator name and the configuration entry key name.
* For example, a prior call to AddConfig("my_op", "key", "value") corresponds to the flattened key/value pair
* {"my_op.key", "value"}.
*
* \return An unordered map of flattened configurations.
*/
const std::unordered_map<std::string, std::string>& GetFlattenedConfigs() const;
private:
std::unordered_map<std::string, std::string> flat_configs_;
};
/** \brief Options object used when creating a new Session object
*
* Wraps ::OrtSessionOptions object and methods
*/
struct SessionOptions;
namespace detail {
// we separate const-only methods because passing const ptr to non-const methods
// is only discovered when inline methods are compiled which is counter-intuitive
template <typename T>
struct ConstSessionOptionsImpl : Base<T> {
using B = Base<T>;
using B::B;
SessionOptions Clone() const; ///< Creates and returns a copy of this SessionOptions object. Wraps OrtApi::CloneSessionOptions
std::string GetConfigEntry(const char* config_key) const; ///< Wraps OrtApi::GetSessionConfigEntry
bool HasConfigEntry(const char* config_key) const; ///< Wraps OrtApi::HasSessionConfigEntry
std::string GetConfigEntryOrDefault(const char* config_key, const std::string& def);
};
template <typename T>
struct SessionOptionsImpl : ConstSessionOptionsImpl<T> {
using B = ConstSessionOptionsImpl<T>;
using B::B;
SessionOptionsImpl& SetIntraOpNumThreads(int intra_op_num_threads); ///< Wraps OrtApi::SetIntraOpNumThreads
SessionOptionsImpl& SetInterOpNumThreads(int inter_op_num_threads); ///< Wraps OrtApi::SetInterOpNumThreads
SessionOptionsImpl& SetGraphOptimizationLevel(GraphOptimizationLevel graph_optimization_level); ///< Wraps OrtApi::SetSessionGraphOptimizationLevel
SessionOptionsImpl& EnableCpuMemArena(); ///< Wraps OrtApi::EnableCpuMemArena
SessionOptionsImpl& DisableCpuMemArena(); ///< Wraps OrtApi::DisableCpuMemArena
SessionOptionsImpl& SetOptimizedModelFilePath(const ORTCHAR_T* optimized_model_file); ///< Wraps OrtApi::SetOptimizedModelFilePath
SessionOptionsImpl& EnableProfiling(const ORTCHAR_T* profile_file_prefix); ///< Wraps OrtApi::EnableProfiling
SessionOptionsImpl& DisableProfiling(); ///< Wraps OrtApi::DisableProfiling
SessionOptionsImpl& EnableOrtCustomOps(); ///< Wraps OrtApi::EnableOrtCustomOps
SessionOptionsImpl& EnableMemPattern(); ///< Wraps OrtApi::EnableMemPattern
SessionOptionsImpl& DisableMemPattern(); ///< Wraps OrtApi::DisableMemPattern
SessionOptionsImpl& SetExecutionMode(ExecutionMode execution_mode); ///< Wraps OrtApi::SetSessionExecutionMode
SessionOptionsImpl& SetLogId(const char* logid); ///< Wraps OrtApi::SetSessionLogId
SessionOptionsImpl& SetLogSeverityLevel(int level); ///< Wraps OrtApi::SetSessionLogSeverityLevel
SessionOptionsImpl& Add(OrtCustomOpDomain* custom_op_domain); ///< Wraps OrtApi::AddCustomOpDomain
SessionOptionsImpl& DisablePerSessionThreads(); ///< Wraps OrtApi::DisablePerSessionThreads
SessionOptionsImpl& AddConfigEntry(const char* config_key, const char* config_value); ///< Wraps OrtApi::AddSessionConfigEntry
SessionOptionsImpl& AddInitializer(const char* name, const OrtValue* ort_val); ///< Wraps OrtApi::AddInitializer
SessionOptionsImpl& AddExternalInitializers(const std::vector<std::string>& names, const std::vector<Value>& ort_values); ///< Wraps OrtApi::AddExternalInitializers
SessionOptionsImpl& AppendExecutionProvider_CUDA(const OrtCUDAProviderOptions& provider_options); ///< Wraps OrtApi::SessionOptionsAppendExecutionProvider_CUDA
SessionOptionsImpl& AppendExecutionProvider_CUDA_V2(const OrtCUDAProviderOptionsV2& provider_options); ///< Wraps OrtApi::SessionOptionsAppendExecutionProvider_CUDA_V2
SessionOptionsImpl& AppendExecutionProvider_ROCM(const OrtROCMProviderOptions& provider_options); ///< Wraps OrtApi::SessionOptionsAppendExecutionProvider_ROCM
SessionOptionsImpl& AppendExecutionProvider_OpenVINO(const OrtOpenVINOProviderOptions& provider_options); ///< Wraps OrtApi::SessionOptionsAppendExecutionProvider_OpenVINO
SessionOptionsImpl& AppendExecutionProvider_TensorRT(const OrtTensorRTProviderOptions& provider_options); ///< Wraps OrtApi::SessionOptionsAppendExecutionProvider_TensorRT
SessionOptionsImpl& AppendExecutionProvider_TensorRT_V2(const OrtTensorRTProviderOptionsV2& provider_options); ///< Wraps OrtApi::SessionOptionsAppendExecutionProvider_TensorRT
SessionOptionsImpl& AppendExecutionProvider_MIGraphX(const OrtMIGraphXProviderOptions& provider_options); ///< Wraps OrtApi::SessionOptionsAppendExecutionProvider_MIGraphX
///< Wraps OrtApi::SessionOptionsAppendExecutionProvider_CANN
SessionOptionsImpl& AppendExecutionProvider_CANN(const OrtCANNProviderOptions& provider_options);
///< Wraps OrtApi::SessionOptionsAppendExecutionProvider_Dnnl
SessionOptionsImpl& AppendExecutionProvider_Dnnl(const OrtDnnlProviderOptions& provider_options);
/// Wraps OrtApi::SessionOptionsAppendExecutionProvider. Currently supports QNN, SNPE and XNNPACK.
SessionOptionsImpl& AppendExecutionProvider(const std::string& provider_name,
const std::unordered_map<std::string, std::string>& provider_options = {});
SessionOptionsImpl& SetCustomCreateThreadFn(OrtCustomCreateThreadFn ort_custom_create_thread_fn); ///< Wraps OrtApi::SessionOptionsSetCustomCreateThreadFn
SessionOptionsImpl& SetCustomThreadCreationOptions(void* ort_custom_thread_creation_options); ///< Wraps OrtApi::SessionOptionsSetCustomThreadCreationOptions
SessionOptionsImpl& SetCustomJoinThreadFn(OrtCustomJoinThreadFn ort_custom_join_thread_fn); ///< Wraps OrtApi::SessionOptionsSetCustomJoinThreadFn
///< Registers the custom operator from the specified shared library via OrtApi::RegisterCustomOpsLibrary_V2.
///< The custom operator configurations are optional. If provided, custom operator configs are set via
///< OrtApi::AddSessionConfigEntry.
SessionOptionsImpl& RegisterCustomOpsLibrary(const ORTCHAR_T* library_name, const CustomOpConfigs& custom_op_configs = {});
SessionOptionsImpl& RegisterCustomOpsUsingFunction(const char* function_name); ///< Wraps OrtApi::RegisterCustomOpsUsingFunction
};
} // namespace detail
using UnownedSessionOptions = detail::SessionOptionsImpl<detail::Unowned<OrtSessionOptions>>;
using ConstSessionOptions = detail::ConstSessionOptionsImpl<detail::Unowned<const OrtSessionOptions>>;
/** \brief Wrapper around ::OrtSessionOptions
*
*/
struct SessionOptions : detail::SessionOptionsImpl<OrtSessionOptions> {
explicit SessionOptions(std::nullptr_t) {} ///< Create an empty SessionOptions object, must be assigned a valid one to be used
SessionOptions(); ///< Wraps OrtApi::CreateSessionOptions
explicit SessionOptions(OrtSessionOptions* p) : SessionOptionsImpl<OrtSessionOptions>{p} {} ///< Used for interop with the C API
UnownedSessionOptions GetUnowned() const { return UnownedSessionOptions{this->p_}; }
ConstSessionOptions GetConst() const { return ConstSessionOptions{this->p_}; }
};
/** \brief Wrapper around ::OrtModelMetadata
*
*/
struct ModelMetadata : detail::Base<OrtModelMetadata> {
explicit ModelMetadata(std::nullptr_t) {} ///< Create an empty ModelMetadata object, must be assigned a valid one to be used
explicit ModelMetadata(OrtModelMetadata* p) : Base<OrtModelMetadata>{p} {} ///< Used for interop with the C API
/** \brief Returns a copy of the producer name.
*
* \param allocator to allocate memory for the copy of the name returned
* \return a instance of smart pointer that would deallocate the buffer when out of scope.
* The OrtAllocator instances must be valid at the point of memory release.
*/
AllocatedStringPtr GetProducerNameAllocated(OrtAllocator* allocator) const; ///< Wraps OrtApi::ModelMetadataGetProducerName
/** \brief Returns a copy of the graph name.
*
* \param allocator to allocate memory for the copy of the name returned
* \return a instance of smart pointer that would deallocate the buffer when out of scope.
* The OrtAllocator instances must be valid at the point of memory release.
*/
AllocatedStringPtr GetGraphNameAllocated(OrtAllocator* allocator) const; ///< Wraps OrtApi::ModelMetadataGetGraphName
/** \brief Returns a copy of the domain name.
*
* \param allocator to allocate memory for the copy of the name returned
* \return a instance of smart pointer that would deallocate the buffer when out of scope.
* The OrtAllocator instances must be valid at the point of memory release.
*/
AllocatedStringPtr GetDomainAllocated(OrtAllocator* allocator) const; ///< Wraps OrtApi::ModelMetadataGetDomain
/** \brief Returns a copy of the description.
*
* \param allocator to allocate memory for the copy of the string returned
* \return a instance of smart pointer that would deallocate the buffer when out of scope.
* The OrtAllocator instances must be valid at the point of memory release.
*/
AllocatedStringPtr GetDescriptionAllocated(OrtAllocator* allocator) const; ///< Wraps OrtApi::ModelMetadataGetDescription
/** \brief Returns a copy of the graph description.
*
* \param allocator to allocate memory for the copy of the string returned
* \return a instance of smart pointer that would deallocate the buffer when out of scope.
* The OrtAllocator instances must be valid at the point of memory release.
*/
AllocatedStringPtr GetGraphDescriptionAllocated(OrtAllocator* allocator) const; ///< Wraps OrtApi::ModelMetadataGetGraphDescription
/** \brief Returns a vector of copies of the custom metadata keys.
*
* \param allocator to allocate memory for the copy of the string returned
* \return a instance std::vector of smart pointers that would deallocate the buffers when out of scope.
* The OrtAllocator instance must be valid at the point of memory release.
*/
std::vector<AllocatedStringPtr> GetCustomMetadataMapKeysAllocated(OrtAllocator* allocator) const; ///< Wraps OrtApi::ModelMetadataGetCustomMetadataMapKeys
/** \brief Looks up a value by a key in the Custom Metadata map
*
* \param key zero terminated string key to lookup
* \param allocator to allocate memory for the copy of the string returned
* \return a instance of smart pointer that would deallocate the buffer when out of scope.
* maybe nullptr if key is not found.
*
* The OrtAllocator instances must be valid at the point of memory release.
*/
AllocatedStringPtr LookupCustomMetadataMapAllocated(const char* key, OrtAllocator* allocator) const; ///< Wraps OrtApi::ModelMetadataLookupCustomMetadataMap
int64_t GetVersion() const; ///< Wraps OrtApi::ModelMetadataGetVersion
};
struct IoBinding;
namespace detail {
// we separate const-only methods because passing const ptr to non-const methods
// is only discovered when inline methods are compiled which is counter-intuitive
template <typename T>
struct ConstSessionImpl : Base<T> {
using B = Base<T>;
using B::B;
size_t GetInputCount() const; ///< Returns the number of model inputs
size_t GetOutputCount() const; ///< Returns the number of model outputs
size_t GetOverridableInitializerCount() const; ///< Returns the number of inputs that have defaults that can be overridden
/** \brief Returns a copy of input name at the specified index.
*
* \param index must less than the value returned by GetInputCount()
* \param allocator to allocate memory for the copy of the name returned
* \return a instance of smart pointer that would deallocate the buffer when out of scope.
* The OrtAllocator instances must be valid at the point of memory release.
*/
AllocatedStringPtr GetInputNameAllocated(size_t index, OrtAllocator* allocator) const;
/** \brief Returns a copy of output name at then specified index.
*
* \param index must less than the value returned by GetOutputCount()
* \param allocator to allocate memory for the copy of the name returned
* \return a instance of smart pointer that would deallocate the buffer when out of scope.
* The OrtAllocator instances must be valid at the point of memory release.
*/
AllocatedStringPtr GetOutputNameAllocated(size_t index, OrtAllocator* allocator) const;
/** \brief Returns a copy of the overridable initializer name at then specified index.
*
* \param index must less than the value returned by GetOverridableInitializerCount()
* \param allocator to allocate memory for the copy of the name returned
* \return a instance of smart pointer that would deallocate the buffer when out of scope.
* The OrtAllocator instances must be valid at the point of memory release.
*/
AllocatedStringPtr GetOverridableInitializerNameAllocated(size_t index, OrtAllocator* allocator) const; ///< Wraps OrtApi::SessionGetOverridableInitializerName
uint64_t GetProfilingStartTimeNs() const; ///< Wraps OrtApi::SessionGetProfilingStartTimeNs
ModelMetadata GetModelMetadata() const; ///< Wraps OrtApi::SessionGetModelMetadata
TypeInfo GetInputTypeInfo(size_t index) const; ///< Wraps OrtApi::SessionGetInputTypeInfo
TypeInfo GetOutputTypeInfo(size_t index) const; ///< Wraps OrtApi::SessionGetOutputTypeInfo
TypeInfo GetOverridableInitializerTypeInfo(size_t index) const; ///< Wraps OrtApi::SessionGetOverridableInitializerTypeInfo
};
template <typename T>
struct SessionImpl : ConstSessionImpl<T> {
using B = ConstSessionImpl<T>;
using B::B;
/** \brief Run the model returning results in an Ort allocated vector.
*
* Wraps OrtApi::Run
*
* The caller provides a list of inputs and a list of the desired outputs to return.
*
* See the output logs for more information on warnings/errors that occur while processing the model.
* Common errors are.. (TODO)
*
* \param[in] run_options
* \param[in] input_names Array of null terminated strings of length input_count that is the list of input names
* \param[in] input_values Array of Value objects of length input_count that is the list of input values
* \param[in] input_count Number of inputs (the size of the input_names & input_values arrays)
* \param[in] output_names Array of C style strings of length output_count that is the list of output names
* \param[in] output_count Number of outputs (the size of the output_names array)
* \return A std::vector of Value objects that directly maps to the output_names array (eg. output_name[0] is the first entry of the returned vector)
*/
std::vector<Value> Run(const RunOptions& run_options, const char* const* input_names, const Value* input_values, size_t input_count,
const char* const* output_names, size_t output_count);
/** \brief Run the model returning results in user provided outputs
* Same as Run(const RunOptions&, const char* const*, const Value*, size_t,const char* const*, size_t)
*/
void Run(const RunOptions& run_options, const char* const* input_names, const Value* input_values, size_t input_count,
const char* const* output_names, Value* output_values, size_t output_count);
void Run(const RunOptions& run_options, const IoBinding&); ///< Wraps OrtApi::RunWithBinding
/** \brief Run the model asynchronously in a thread owned by intra op thread pool
*
* Wraps OrtApi::RunAsync
*
* \param[in] run_options
* \param[in] input_names Array of null terminated UTF8 encoded strings of the input names
* \param[in] input_values Array of Value objects of length input_count
* \param[in] input_count Number of elements in the input_names and inputs arrays
* \param[in] output_names Array of null terminated UTF8 encoded strings of the output names
* \param[out] output_values Array of provided Values to be filled with outputs.
* On calling RunAsync, output_values[i] could either be initialized by a null pointer or a preallocated OrtValue*.
* Later, on invoking the callback, each output_values[i] of null will be filled with an OrtValue* allocated by onnxruntime.
* Then, an OrtValue** pointer will be casted from output_values, and pass to the callback.
* NOTE: it is customer's duty to finally release output_values and each of its member,
* regardless of whether the member (Ort::Value) is allocated by onnxruntime or preallocated by the customer.
* \param[in] output_count Number of elements in the output_names and outputs array
* \param[in] callback Callback function on model run completion
* \param[in] user_data User data that pass back to the callback
*/
void RunAsync(const RunOptions& run_options, const char* const* input_names, const Value* input_values, size_t input_count,
const char* const* output_names, Value* output_values, size_t output_count, RunAsyncCallbackFn callback, void* user_data);
/** \brief End profiling and return a copy of the profiling file name.
*
* \param allocator to allocate memory for the copy of the string returned
* \return a instance of smart pointer that would deallocate the buffer when out of scope.
* The OrtAllocator instances must be valid at the point of memory release.
*/
AllocatedStringPtr EndProfilingAllocated(OrtAllocator* allocator); ///< Wraps OrtApi::SessionEndProfiling
};
} // namespace detail
using ConstSession = detail::ConstSessionImpl<detail::Unowned<const OrtSession>>;
using UnownedSession = detail::SessionImpl<detail::Unowned<OrtSession>>;
/** \brief Wrapper around ::OrtSession
*
*/
struct Session : detail::SessionImpl<OrtSession> {
explicit Session(std::nullptr_t) {} ///< Create an empty Session object, must be assigned a valid one to be used
Session(const Env& env, const ORTCHAR_T* model_path, const SessionOptions& options); ///< Wraps OrtApi::CreateSession
Session(const Env& env, const ORTCHAR_T* model_path, const SessionOptions& options,
OrtPrepackedWeightsContainer* prepacked_weights_container); ///< Wraps OrtApi::CreateSessionWithPrepackedWeightsContainer
Session(const Env& env, const void* model_data, size_t model_data_length, const SessionOptions& options); ///< Wraps OrtApi::CreateSessionFromArray
Session(const Env& env, const void* model_data, size_t model_data_length, const SessionOptions& options,
OrtPrepackedWeightsContainer* prepacked_weights_container); ///< Wraps OrtApi::CreateSessionFromArrayWithPrepackedWeightsContainer
ConstSession GetConst() const { return ConstSession{this->p_}; }
UnownedSession GetUnowned() const { return UnownedSession{this->p_}; }
};
namespace detail {
template <typename T>
struct MemoryInfoImpl : Base<T> {
using B = Base<T>;
using B::B;
std::string GetAllocatorName() const;
OrtAllocatorType GetAllocatorType() const;
int GetDeviceId() const;
OrtMemoryInfoDeviceType GetDeviceType() const;
OrtMemType GetMemoryType() const;
template <typename U>
bool operator==(const MemoryInfoImpl<U>& o) const;
};
} // namespace detail
// Const object holder that does not own the underlying object
using ConstMemoryInfo = detail::MemoryInfoImpl<detail::Unowned<const OrtMemoryInfo>>;
/** \brief Wrapper around ::OrtMemoryInfo
*
*/
struct MemoryInfo : detail::MemoryInfoImpl<OrtMemoryInfo> {
static MemoryInfo CreateCpu(OrtAllocatorType type, OrtMemType mem_type1);
explicit MemoryInfo(std::nullptr_t) {} ///< No instance is created
explicit MemoryInfo(OrtMemoryInfo* p) : MemoryInfoImpl<OrtMemoryInfo>{p} {} ///< Take ownership of a pointer created by C Api
MemoryInfo(const char* name, OrtAllocatorType type, int id, OrtMemType mem_type);
ConstMemoryInfo GetConst() const { return ConstMemoryInfo{this->p_}; }
};
namespace detail {
template <typename T>
struct TensorTypeAndShapeInfoImpl : Base<T> {
using B = Base<T>;
using B::B;
ONNXTensorElementDataType GetElementType() const; ///< Wraps OrtApi::GetTensorElementType
size_t GetElementCount() const; ///< Wraps OrtApi::GetTensorShapeElementCount
size_t GetDimensionsCount() const; ///< Wraps OrtApi::GetDimensionsCount
/** \deprecated use GetShape() returning std::vector
* [[deprecated]]
* This interface is unsafe to use
*/
[[deprecated("use GetShape()")]] void GetDimensions(int64_t* values, size_t values_count) const; ///< Wraps OrtApi::GetDimensions
void GetSymbolicDimensions(const char** values, size_t values_count) const; ///< Wraps OrtApi::GetSymbolicDimensions
std::vector<int64_t> GetShape() const; ///< Uses GetDimensionsCount & GetDimensions to return a std::vector of the shape
};
} // namespace detail
using ConstTensorTypeAndShapeInfo = detail::TensorTypeAndShapeInfoImpl<detail::Unowned<const OrtTensorTypeAndShapeInfo>>;
/** \brief Wrapper around ::OrtTensorTypeAndShapeInfo
*
*/
struct TensorTypeAndShapeInfo : detail::TensorTypeAndShapeInfoImpl<OrtTensorTypeAndShapeInfo> {
explicit TensorTypeAndShapeInfo(std::nullptr_t) {} ///< Create an empty TensorTypeAndShapeInfo object, must be assigned a valid one to be used
explicit TensorTypeAndShapeInfo(OrtTensorTypeAndShapeInfo* p) : TensorTypeAndShapeInfoImpl{p} {} ///< Used for interop with the C API
ConstTensorTypeAndShapeInfo GetConst() const { return ConstTensorTypeAndShapeInfo{this->p_}; }
};
namespace detail {
template <typename T>
struct SequenceTypeInfoImpl : Base<T> {
using B = Base<T>;
using B::B;
TypeInfo GetSequenceElementType() const; ///< Wraps OrtApi::GetSequenceElementType
};
} // namespace detail
using ConstSequenceTypeInfo = detail::SequenceTypeInfoImpl<detail::Unowned<const OrtSequenceTypeInfo>>;
/** \brief Wrapper around ::OrtSequenceTypeInfo
*
*/
struct SequenceTypeInfo : detail::SequenceTypeInfoImpl<OrtSequenceTypeInfo> {
explicit SequenceTypeInfo(std::nullptr_t) {} ///< Create an empty SequenceTypeInfo object, must be assigned a valid one to be used
explicit SequenceTypeInfo(OrtSequenceTypeInfo* p) : SequenceTypeInfoImpl<OrtSequenceTypeInfo>{p} {} ///< Used for interop with the C API
ConstSequenceTypeInfo GetConst() const { return ConstSequenceTypeInfo{this->p_}; }
};
namespace detail {
template <typename T>
struct OptionalTypeInfoImpl : Base<T> {
using B = Base<T>;
using B::B;
TypeInfo GetOptionalElementType() const; ///< Wraps OrtApi::CastOptionalTypeToContainedTypeInfo
};
} // namespace detail
// This is always owned by the TypeInfo and can only be obtained from it.
using ConstOptionalTypeInfo = detail::OptionalTypeInfoImpl<detail::Unowned<const OrtOptionalTypeInfo>>;
namespace detail {
template <typename T>
struct MapTypeInfoImpl : detail::Base<T> {
using B = Base<T>;
using B::B;
ONNXTensorElementDataType GetMapKeyType() const; ///< Wraps OrtApi::GetMapKeyType
TypeInfo GetMapValueType() const; ///< Wraps OrtApi::GetMapValueType
};
} // namespace detail
using ConstMapTypeInfo = detail::MapTypeInfoImpl<detail::Unowned<const OrtMapTypeInfo>>;
/** \brief Wrapper around ::OrtMapTypeInfo
*
*/
struct MapTypeInfo : detail::MapTypeInfoImpl<OrtMapTypeInfo> {
explicit MapTypeInfo(std::nullptr_t) {} ///< Create an empty MapTypeInfo object, must be assigned a valid one to be used
explicit MapTypeInfo(OrtMapTypeInfo* p) : MapTypeInfoImpl<OrtMapTypeInfo>{p} {} ///< Used for interop with the C API
ConstMapTypeInfo GetConst() const { return ConstMapTypeInfo{this->p_}; }
};
namespace detail {
template <typename T>
struct TypeInfoImpl : detail::Base<T> {
using B = Base<T>;
using B::B;
ConstTensorTypeAndShapeInfo GetTensorTypeAndShapeInfo() const; ///< Wraps OrtApi::CastTypeInfoToTensorInfo
ConstSequenceTypeInfo GetSequenceTypeInfo() const; ///< Wraps OrtApi::CastTypeInfoToSequenceTypeInfo
ConstMapTypeInfo GetMapTypeInfo() const; ///< Wraps OrtApi::CastTypeInfoToMapTypeInfo
ConstOptionalTypeInfo GetOptionalTypeInfo() const; ///< wraps OrtApi::CastTypeInfoToOptionalTypeInfo
ONNXType GetONNXType() const;
};
} // namespace detail
/// <summary>
/// Contains a constant, unowned OrtTypeInfo that can be copied and passed around by value.
/// Provides access to const OrtTypeInfo APIs.
/// </summary>
using ConstTypeInfo = detail::TypeInfoImpl<detail::Unowned<const OrtTypeInfo>>;
/// <summary>
/// Type information that may contain either TensorTypeAndShapeInfo or
/// the information about contained sequence or map depending on the ONNXType.
/// </summary>
struct TypeInfo : detail::TypeInfoImpl<OrtTypeInfo> {
explicit TypeInfo(std::nullptr_t) {} ///< Create an empty TypeInfo object, must be assigned a valid one to be used
explicit TypeInfo(OrtTypeInfo* p) : TypeInfoImpl<OrtTypeInfo>{p} {} ///< C API Interop
ConstTypeInfo GetConst() const { return ConstTypeInfo{this->p_}; }
};
namespace detail {
// This structure is used to feed sparse tensor values
// information for use with FillSparseTensor<Format>() API
// if the data type for the sparse tensor values is numeric
// use data.p_data, otherwise, use data.str pointer to feed
// values. data.str is an array of const char* that are zero terminated.
// number of strings in the array must match shape size.
// For fully sparse tensors use shape {0} and set p_data/str
// to nullptr.
struct OrtSparseValuesParam {
const int64_t* values_shape;
size_t values_shape_len;
union {
const void* p_data;
const char** str;
} data;
};
// Provides a way to pass shape in a single
// argument
struct Shape {
const int64_t* shape;
size_t shape_len;
};
template <typename T>
struct ConstValueImpl : Base<T> {
using B = Base<T>;
using B::B;
/// <summary>
/// Obtains a pointer to a user defined data for experimental purposes
/// </summary>
template <typename R>
void GetOpaqueData(const char* domain, const char* type_name, R&) const; ///< Wraps OrtApi::GetOpaqueValue
bool IsTensor() const; ///< Returns true if Value is a tensor, false for other types like map/sequence/etc
bool HasValue() const; /// < Return true if OrtValue contains data and returns false if the OrtValue is a None
size_t GetCount() const; // If a non tensor, returns 2 for map and N for sequence, where N is the number of elements
Value GetValue(int index, OrtAllocator* allocator) const;
/// <summary>
/// This API returns a full length of string data contained within either a tensor or a sparse Tensor.
/// For sparse tensor it returns a full length of stored non-empty strings (values). The API is useful
/// for allocating necessary memory and calling GetStringTensorContent().
/// </summary>
/// <returns>total length of UTF-8 encoded bytes contained. No zero terminators counted.</returns>
size_t GetStringTensorDataLength() const;
/// <summary>
/// The API copies all of the UTF-8 encoded string data contained within a tensor or a sparse tensor
/// into a supplied buffer. Use GetStringTensorDataLength() to find out the length of the buffer to allocate.
/// The user must also allocate offsets buffer with the number of entries equal to that of the contained
/// strings.
///
/// Strings are always assumed to be on CPU, no X-device copy.
/// </summary>
/// <param name="buffer">user allocated buffer</param>
/// <param name="buffer_length">length in bytes of the allocated buffer</param>
/// <param name="offsets">a pointer to the offsets user allocated buffer</param>
/// <param name="offsets_count">count of offsets, must be equal to the number of strings contained.
/// that can be obtained from the shape of the tensor or from GetSparseTensorValuesTypeAndShapeInfo()
/// for sparse tensors</param>
void GetStringTensorContent(void* buffer, size_t buffer_length, size_t* offsets, size_t offsets_count) const;
/// <summary>
/// Returns a const typed pointer to the tensor contained data.
/// No type checking is performed, the caller must ensure the type matches the tensor type.
/// </summary>
/// <typeparam name="T"></typeparam>
/// <returns>const pointer to data, no copies made</returns>
template <typename R>
const R* GetTensorData() const; ///< Wraps OrtApi::GetTensorMutableData /// <summary>
/// <summary>
/// Returns a non-typed pointer to a tensor contained data.
/// </summary>
/// <returns>const pointer to data, no copies made</returns>
const void* GetTensorRawData() const;
/// <summary>
/// The API returns type information for data contained in a tensor. For sparse
/// tensors it returns type information for contained non-zero values.
/// It returns dense shape for sparse tensors.
/// </summary>
/// <returns>TypeInfo</returns>
TypeInfo GetTypeInfo() const;
/// <summary>
/// The API returns type information for data contained in a tensor. For sparse
/// tensors it returns type information for contained non-zero values.
/// It returns dense shape for sparse tensors.
/// </summary>
/// <returns>TensorTypeAndShapeInfo</returns>
TensorTypeAndShapeInfo GetTensorTypeAndShapeInfo() const;
/// <summary>
/// This API returns information about the memory allocation used to hold data.
/// </summary>
/// <returns>Non owning instance of MemoryInfo</returns>
ConstMemoryInfo GetTensorMemoryInfo() const;
/// <summary>
/// The API copies UTF-8 encoded bytes for the requested string element
/// contained within a tensor or a sparse tensor into a provided buffer.
/// Use GetStringTensorElementLength() to obtain the length of the buffer to allocate.
/// </summary>
/// <param name="buffer_length"></param>
/// <param name="element_index"></param>
/// <param name="buffer"></param>
void GetStringTensorElement(size_t buffer_length, size_t element_index, void* buffer) const;
/// <summary>
/// Returns string tensor UTF-8 encoded string element.
/// Use of this API is recommended over GetStringTensorElement() that takes void* buffer pointer.
/// </summary>
/// <param name="element_index"></param>
/// <returns>std::string</returns>
std::string GetStringTensorElement(size_t element_index) const;
/// <summary>
/// The API returns a byte length of UTF-8 encoded string element
/// contained in either a tensor or a spare tensor values.
/// </summary>
/// <param name="element_index"></param>
/// <returns>byte length for the specified string element</returns>
size_t GetStringTensorElementLength(size_t element_index) const;
#if !defined(DISABLE_SPARSE_TENSORS)
/// <summary>
/// The API returns the sparse data format this OrtValue holds in a sparse tensor.
/// If the sparse tensor was not fully constructed, i.e. Use*() or Fill*() API were not used
/// the value returned is ORT_SPARSE_UNDEFINED.
/// </summary>
/// <returns>Format enum</returns>
OrtSparseFormat GetSparseFormat() const;
/// <summary>
/// The API returns type and shape information for stored non-zero values of the
/// sparse tensor. Use GetSparseTensorValues() to obtain values buffer pointer.
/// </summary>
/// <returns>TensorTypeAndShapeInfo values information</returns>
TensorTypeAndShapeInfo GetSparseTensorValuesTypeAndShapeInfo() const;
/// <summary>
/// The API returns type and shape information for the specified indices. Each supported
/// indices have their own enum values even if a give format has more than one kind of indices.
/// Use GetSparseTensorIndicesData() to obtain pointer to indices buffer.
/// </summary>
/// <param name="format">enum requested</param>
/// <returns>type and shape information</returns>
TensorTypeAndShapeInfo GetSparseTensorIndicesTypeShapeInfo(OrtSparseIndicesFormat format) const;
/// <summary>
/// The API retrieves a pointer to the internal indices buffer. The API merely performs
/// a convenience data type casting on the return type pointer. Make sure you are requesting
/// the right type, use GetSparseTensorIndicesTypeShapeInfo();
/// </summary>
/// <typeparam name="T">type to cast to</typeparam>
/// <param name="indices_format">requested indices kind</param>
/// <param name="num_indices">number of indices entries</param>
/// <returns>Pinter to the internal sparse tensor buffer containing indices. Do not free this pointer.</returns>
template <typename R>
const R* GetSparseTensorIndicesData(OrtSparseIndicesFormat indices_format, size_t& num_indices) const;
/// <summary>
/// Returns true if the OrtValue contains a sparse tensor
/// </summary>
/// <returns></returns>
bool IsSparseTensor() const;
/// <summary>
/// The API returns a pointer to an internal buffer of the sparse tensor
/// containing non-zero values. The API merely does casting. Make sure you
/// are requesting the right data type by calling GetSparseTensorValuesTypeAndShapeInfo()
/// first.
/// </summary>
/// <typeparam name="T">numeric data types only. Use GetStringTensor*() to retrieve strings.</typeparam>
/// <returns>a pointer to the internal values buffer. Do not free this pointer.</returns>
template <typename R>
const R* GetSparseTensorValues() const;
#endif
};
template <typename T>
struct ValueImpl : ConstValueImpl<T> {
using B = ConstValueImpl<T>;
using B::B;
/// <summary>
/// Returns a non-const typed pointer to an OrtValue/Tensor contained buffer
/// No type checking is performed, the caller must ensure the type matches the tensor type.
/// </summary>
/// <returns>non-const pointer to data, no copies made</returns>
template <typename R>
R* GetTensorMutableData();
/// <summary>
/// Returns a non-typed non-const pointer to a tensor contained data.
/// </summary>
/// <returns>pointer to data, no copies made</returns>
void* GetTensorMutableRawData();
/// <summary>
// Obtain a reference to an element of data at the location specified
/// by the vector of dims.
/// </summary>
/// <typeparam name="R"></typeparam>
/// <param name="location">[in] expressed by a vecotr of dimensions offsets</param>
/// <returns></returns>
template <typename R>
R& At(const std::vector<int64_t>& location);
/// <summary>
/// Set all strings at once in a string tensor
/// </summary>
/// <param name="s">[in] An array of strings. Each string in this array must be null terminated.</param>
/// <param name="s_len">[in] Count of strings in s (Must match the size of \p value's tensor shape)</param>
void FillStringTensor(const char* const* s, size_t s_len);
/// <summary>
/// Set a single string in a string tensor
/// </summary>
/// <param name="s">[in] A null terminated UTF-8 encoded string</param>
/// <param name="index">[in] Index of the string in the tensor to set</param>
void FillStringTensorElement(const char* s, size_t index);
/// <summary>
/// Allocate if necessary and obtain a pointer to a UTF-8
/// encoded string element buffer indexed by the flat element index,
/// of the specified length.
///
/// This API is for advanced usage. It avoids a need to construct
/// an auxiliary array of string pointers, and allows to write data directly
/// (do not zero terminate).
/// </summary>
/// <param name="index"></param>
/// <param name="buffer_length"></param>
/// <returns>a pointer to a writable buffer</returns>
char* GetResizedStringTensorElementBuffer(size_t index, size_t buffer_length);
#if !defined(DISABLE_SPARSE_TENSORS)
/// <summary>
/// Supplies COO format specific indices and marks the contained sparse tensor as being a COO format tensor.
/// Values are supplied with a CreateSparseTensor() API. The supplied indices are not copied and the user
/// allocated buffers lifespan must eclipse that of the OrtValue.
/// The location of the indices is assumed to be the same as specified by OrtMemoryInfo argument at the creation time.
/// </summary>
/// <param name="indices_data">pointer to the user allocated buffer with indices. Use nullptr for fully sparse tensors.</param>
/// <param name="indices_num">number of indices entries. Use 0 for fully sparse tensors</param>
void UseCooIndices(int64_t* indices_data, size_t indices_num);
/// <summary>
/// Supplies CSR format specific indices and marks the contained sparse tensor as being a CSR format tensor.
/// Values are supplied with a CreateSparseTensor() API. The supplied indices are not copied and the user
/// allocated buffers lifespan must eclipse that of the OrtValue.
/// The location of the indices is assumed to be the same as specified by OrtMemoryInfo argument at the creation time.
/// </summary>
/// <param name="inner_data">pointer to the user allocated buffer with inner indices or nullptr for fully sparse tensors</param>
/// <param name="inner_num">number of csr inner indices or 0 for fully sparse tensors</param>
/// <param name="outer_data">pointer to the user allocated buffer with outer indices or nullptr for fully sparse tensors</param>
/// <param name="outer_num">number of csr outer indices or 0 for fully sparse tensors</param>
void UseCsrIndices(int64_t* inner_data, size_t inner_num, int64_t* outer_data, size_t outer_num);
/// <summary>
/// Supplies BlockSparse format specific indices and marks the contained sparse tensor as being a BlockSparse format tensor.
/// Values are supplied with a CreateSparseTensor() API. The supplied indices are not copied and the user
/// allocated buffers lifespan must eclipse that of the OrtValue.
/// The location of the indices is assumed to be the same as specified by OrtMemoryInfo argument at the creation time.
/// </summary>
/// <param name="indices_shape">indices shape or a {0} for fully sparse</param>
/// <param name="indices_data">user allocated buffer with indices or nullptr for fully spare tensors</param>
void UseBlockSparseIndices(const Shape& indices_shape, int32_t* indices_data);
/// <summary>
/// The API will allocate memory using the allocator instance supplied to the CreateSparseTensor() API
/// and copy the values and COO indices into it. If data_mem_info specifies that the data is located
/// at difference device than the allocator, a X-device copy will be performed if possible.
/// </summary>
/// <param name="data_mem_info">specified buffer memory description</param>
/// <param name="values_param">values buffer information.</param>
/// <param name="indices_data">coo indices buffer or nullptr for fully sparse data</param>
/// <param name="indices_num">number of COO indices or 0 for fully sparse data</param>
void FillSparseTensorCoo(const OrtMemoryInfo* data_mem_info, const OrtSparseValuesParam& values_param,
const int64_t* indices_data, size_t indices_num);
/// <summary>
/// The API will allocate memory using the allocator instance supplied to the CreateSparseTensor() API
/// and copy the values and CSR indices into it. If data_mem_info specifies that the data is located
/// at difference device than the allocator, a X-device copy will be performed if possible.
/// </summary>
/// <param name="data_mem_info">specified buffer memory description</param>
/// <param name="values">values buffer information</param>
/// <param name="inner_indices_data">csr inner indices pointer or nullptr for fully sparse tensors</param>
/// <param name="inner_indices_num">number of csr inner indices or 0 for fully sparse tensors</param>
/// <param name="outer_indices_data">pointer to csr indices data or nullptr for fully sparse tensors</param>
/// <param name="outer_indices_num">number of csr outer indices or 0</param>
void FillSparseTensorCsr(const OrtMemoryInfo* data_mem_info,
const OrtSparseValuesParam& values,
const int64_t* inner_indices_data, size_t inner_indices_num,
const int64_t* outer_indices_data, size_t outer_indices_num);
/// <summary>
/// The API will allocate memory using the allocator instance supplied to the CreateSparseTensor() API
/// and copy the values and BlockSparse indices into it. If data_mem_info specifies that the data is located
/// at difference device than the allocator, a X-device copy will be performed if possible.
/// </summary>
/// <param name="data_mem_info">specified buffer memory description</param>
/// <param name="values">values buffer information</param>
/// <param name="indices_shape">indices shape. use {0} for fully sparse tensors</param>
/// <param name="indices_data">pointer to indices data or nullptr for fully sparse tensors</param>
void FillSparseTensorBlockSparse(const OrtMemoryInfo* data_mem_info,
const OrtSparseValuesParam& values,
const Shape& indices_shape,
const int32_t* indices_data);
#endif
};
} // namespace detail
using ConstValue = detail::ConstValueImpl<detail::Unowned<const OrtValue>>;
using UnownedValue = detail::ValueImpl<detail::Unowned<OrtValue>>;
/** \brief Wrapper around ::OrtValue
*
*/
struct Value : detail::ValueImpl<OrtValue> {
using Base = detail::ValueImpl<OrtValue>;
using OrtSparseValuesParam = detail::OrtSparseValuesParam;
using Shape = detail::Shape;
explicit Value(std::nullptr_t) {} ///< Create an empty Value object, must be assigned a valid one to be used
explicit Value(OrtValue* p) : Base{p} {} ///< Used for interop with the C API
Value(Value&&) = default;
Value& operator=(Value&&) = default;
ConstValue GetConst() const { return ConstValue{this->p_}; }
UnownedValue GetUnowned() const { return UnownedValue{this->p_}; }
/** \brief Creates a tensor with a user supplied buffer. Wraps OrtApi::CreateTensorWithDataAsOrtValue.
* \tparam T The numeric datatype. This API is not suitable for strings.
* \param info Memory description of where the p_data buffer resides (CPU vs GPU etc).
* \param p_data Pointer to the data buffer.
* \param p_data_element_count The number of elements in the data buffer.
* \param shape Pointer to the tensor shape dimensions.
* \param shape_len The number of tensor shape dimensions.
*/
template <typename T>
static Value CreateTensor(const OrtMemoryInfo* info, T* p_data, size_t p_data_element_count, const int64_t* shape, size_t shape_len);
/** \brief Creates a tensor with a user supplied buffer. Wraps OrtApi::CreateTensorWithDataAsOrtValue.
*
* \param info Memory description of where the p_data buffer resides (CPU vs GPU etc).
* \param p_data Pointer to the data buffer.
* \param p_data_byte_count The number of bytes in the data buffer.
* \param shape Pointer to the tensor shape dimensions.
* \param shape_len The number of tensor shape dimensions.
* \param type The data type.
*/
static Value CreateTensor(const OrtMemoryInfo* info, void* p_data, size_t p_data_byte_count, const int64_t* shape, size_t shape_len,
ONNXTensorElementDataType type);
/** \brief Creates an OrtValue with a tensor using a supplied OrtAllocator. Wraps OrtApi::CreateTensorAsOrtValue.
* This overload will allocate the buffer for the tensor according to the supplied shape and data type.
* The allocated buffer will be owned by the returned OrtValue and will be freed when the OrtValue is released.
* The input data would need to be copied into the allocated buffer.
* This API is not suitable for strings.
*
* \tparam T The numeric datatype. This API is not suitable for strings.
* \param allocator The allocator to use.
* \param shape Pointer to the tensor shape dimensions.
* \param shape_len The number of tensor shape dimensions.
*/
template <typename T>
static Value CreateTensor(OrtAllocator* allocator, const int64_t* shape, size_t shape_len);
/** \brief Creates an OrtValue with a tensor using the supplied OrtAllocator.
* Wraps OrtApi::CreateTensorAsOrtValue.
* The allocated buffer will be owned by the returned OrtValue and will be freed when the OrtValue is released.
* The input data would need to be copied into the allocated buffer.
* This API is not suitable for strings.
*
* \param allocator The allocator to use.
* \param shape Pointer to the tensor shape dimensions.
* \param shape_len The number of tensor shape dimensions.
* \param type The data type.
*/
static Value CreateTensor(OrtAllocator* allocator, const int64_t* shape, size_t shape_len, ONNXTensorElementDataType type);
/** \brief Creates an OrtValue with a Map Onnx type representation.
* The API would ref-count the supplied OrtValues and they will be released
* when the returned OrtValue is released. The caller may release keys and values after the call
* returns.
*
* \param keys an OrtValue containing a tensor with primitive data type keys.
* \param values an OrtValue that may contain a tensor. Ort currently supports only primitive data type values.
*/
static Value CreateMap(const Value& keys, const Value& values); ///< Wraps OrtApi::CreateValue
/** \brief Creates an OrtValue with a Sequence Onnx type representation.
* The API would ref-count the supplied OrtValues and they will be released
* when the returned OrtValue is released. The caller may release the values after the call
* returns.
*
* \param values a vector of OrtValues that must have the same Onnx value type.
*/
static Value CreateSequence(const std::vector<Value>& values); ///< Wraps OrtApi::CreateValue
/** \brief Creates an OrtValue wrapping an Opaque type.
* This is used for experimental support of non-tensor types.
*
* \tparam T - the type of the value.
* \param domain - zero terminated utf-8 string. Domain of the type.
* \param type_name - zero terminated utf-8 string. Name of the type.
* \param value - the value to be wrapped.
*/
template <typename T>
static Value CreateOpaque(const char* domain, const char* type_name, const T& value); ///< Wraps OrtApi::CreateOpaqueValue
#if !defined(DISABLE_SPARSE_TENSORS)
/// <summary>
/// This is a simple forwarding method to the other overload that helps deducing
/// data type enum value from the type of the buffer.
/// </summary>
/// <typeparam name="T">numeric datatype. This API is not suitable for strings.</typeparam>
/// <param name="info">Memory description where the user buffers reside (CPU vs GPU etc)</param>
/// <param name="p_data">pointer to the user supplied buffer, use nullptr for fully sparse tensors</param>
/// <param name="dense_shape">a would be dense shape of the tensor</param>
/// <param name="values_shape">non zero values shape. Use a single 0 shape for fully sparse tensors.</param>
/// <returns></returns>
template <typename T>
static Value CreateSparseTensor(const OrtMemoryInfo* info, T* p_data, const Shape& dense_shape,
const Shape& values_shape);
/// <summary>
/// Creates an OrtValue instance containing SparseTensor. This constructs
/// a sparse tensor that makes use of user allocated buffers. It does not make copies
/// of the user provided data and does not modify it. The lifespan of user provided buffers should
/// eclipse the life span of the resulting OrtValue. This call constructs an instance that only contain
/// a pointer to non-zero values. To fully populate the sparse tensor call Use<Format>Indices() API below
/// to supply a sparse format specific indices.
/// This API is not suitable for string data. Use CreateSparseTensor() with allocator specified so strings
/// can be properly copied into the allocated buffer.
/// </summary>
/// <param name="info">Memory description where the user buffers reside (CPU vs GPU etc)</param>
/// <param name="p_data">pointer to the user supplied buffer, use nullptr for fully sparse tensors</param>
/// <param name="dense_shape">a would be dense shape of the tensor</param>
/// <param name="values_shape">non zero values shape. Use a single 0 shape for fully sparse tensors.</param>
/// <param name="type">data type</param>
/// <returns>Ort::Value instance containing SparseTensor</returns>
static Value CreateSparseTensor(const OrtMemoryInfo* info, void* p_data, const Shape& dense_shape,
const Shape& values_shape, ONNXTensorElementDataType type);
/// <summary>
/// This is a simple forwarding method to the below CreateSparseTensor.
/// This helps to specify data type enum in terms of C++ data type.
/// Use CreateSparseTensor<T>
/// </summary>
/// <typeparam name="T">numeric data type only. String data enum must be specified explicitly.</typeparam>
/// <param name="allocator">allocator to use</param>
/// <param name="dense_shape">a would be dense shape of the tensor</param>
/// <returns>Ort::Value</returns>
template <typename T>
static Value CreateSparseTensor(OrtAllocator* allocator, const Shape& dense_shape);
/// <summary>
/// Creates an instance of OrtValue containing sparse tensor. The created instance has no data.
/// The data must be supplied by on of the FillSparseTensor<Format>() methods that take both non-zero values
/// and indices. The data will be copied into a buffer that would be allocated using the supplied allocator.
/// Use this API to create OrtValues that contain sparse tensors with all supported data types including
/// strings.
/// </summary>
/// <param name="allocator">allocator to use. The allocator lifespan must eclipse that of the resulting OrtValue</param>
/// <param name="dense_shape">a would be dense shape of the tensor</param>
/// <param name="type">data type</param>
/// <returns>an instance of Ort::Value</returns>
static Value CreateSparseTensor(OrtAllocator* allocator, const Shape& dense_shape, ONNXTensorElementDataType type);
#endif // !defined(DISABLE_SPARSE_TENSORS)
};
/// <summary>
/// Represents native memory allocation coming from one of the
/// OrtAllocators registered with OnnxRuntime.
/// Use it to wrap an allocation made by an allocator
/// so it can be automatically released when no longer needed.
/// </summary>
struct MemoryAllocation {
MemoryAllocation(OrtAllocator* allocator, void* p, size_t size);
~MemoryAllocation();
MemoryAllocation(const MemoryAllocation&) = delete;
MemoryAllocation& operator=(const MemoryAllocation&) = delete;
MemoryAllocation(MemoryAllocation&&) noexcept;
MemoryAllocation& operator=(MemoryAllocation&&) noexcept;
void* get() { return p_; }
size_t size() const { return size_; }
private:
OrtAllocator* allocator_;
void* p_;
size_t size_;
};
namespace detail {
template <typename T>
struct AllocatorImpl : Base<T> {
using B = Base<T>;
using B::B;
void* Alloc(size_t size);
MemoryAllocation GetAllocation(size_t size);
void Free(void* p);
ConstMemoryInfo GetInfo() const;
};
} // namespace detail
/** \brief Wrapper around ::OrtAllocator default instance that is owned by Onnxruntime
*
*/
struct AllocatorWithDefaultOptions : detail::AllocatorImpl<detail::Unowned<OrtAllocator>> {
explicit AllocatorWithDefaultOptions(std::nullptr_t) {} ///< Convenience to create a class member and then replace with an instance
AllocatorWithDefaultOptions();
};
/** \brief Wrapper around ::OrtAllocator
*
*/
struct Allocator : detail::AllocatorImpl<OrtAllocator> {
explicit Allocator(std::nullptr_t) {} ///< Convenience to create a class member and then replace with an instance
Allocator(const Session& session, const OrtMemoryInfo*);
};
using UnownedAllocator = detail::AllocatorImpl<detail::Unowned<OrtAllocator>>;
namespace detail {
namespace binding_utils {
// Bring these out of template
std::vector<std::string> GetOutputNamesHelper(const OrtIoBinding* binding, OrtAllocator*);
std::vector<Value> GetOutputValuesHelper(const OrtIoBinding* binding, OrtAllocator*);
} // namespace binding_utils
template <typename T>
struct ConstIoBindingImpl : Base<T> {
using B = Base<T>;
using B::B;
std::vector<std::string> GetOutputNames() const;
std::vector<std::string> GetOutputNames(OrtAllocator*) const;
std::vector<Value> GetOutputValues() const;
std::vector<Value> GetOutputValues(OrtAllocator*) const;
};
template <typename T>
struct IoBindingImpl : ConstIoBindingImpl<T> {
using B = ConstIoBindingImpl<T>;
using B::B;
void BindInput(const char* name, const Value&);
void BindOutput(const char* name, const Value&);
void BindOutput(const char* name, const OrtMemoryInfo*);
void ClearBoundInputs();
void ClearBoundOutputs();
void SynchronizeInputs();
void SynchronizeOutputs();
};
} // namespace detail
using ConstIoBinding = detail::ConstIoBindingImpl<detail::Unowned<const OrtIoBinding>>;
using UnownedIoBinding = detail::IoBindingImpl<detail::Unowned<OrtIoBinding>>;
/** \brief Wrapper around ::OrtIoBinding
*
*/
struct IoBinding : detail::IoBindingImpl<OrtIoBinding> {
explicit IoBinding(std::nullptr_t) {} ///< Create an empty object for convenience. Sometimes, we want to initialize members later.
explicit IoBinding(Session& session);
ConstIoBinding GetConst() const { return ConstIoBinding{this->p_}; }
UnownedIoBinding GetUnowned() const { return UnownedIoBinding{this->p_}; }
};
/*! \struct Ort::ArenaCfg
* \brief it is a structure that represents the configuration of an arena based allocator
* \details Please see docs/C_API.md for details
*/
struct ArenaCfg : detail::Base<OrtArenaCfg> {
explicit ArenaCfg(std::nullptr_t) {} ///< Create an empty ArenaCfg object, must be assigned a valid one to be used
/**
* Wraps OrtApi::CreateArenaCfg
* \param max_mem - use 0 to allow ORT to choose the default
* \param arena_extend_strategy - use -1 to allow ORT to choose the default, 0 = kNextPowerOfTwo, 1 = kSameAsRequested
* \param initial_chunk_size_bytes - use -1 to allow ORT to choose the default
* \param max_dead_bytes_per_chunk - use -1 to allow ORT to choose the default
* See docs/C_API.md for details on what the following parameters mean and how to choose these values
*/
ArenaCfg(size_t max_mem, int arena_extend_strategy, int initial_chunk_size_bytes, int max_dead_bytes_per_chunk);
};
//
// Custom OPs (only needed to implement custom OPs)
//
/// <summary>
/// This struct provides life time management for custom op attribute
/// </summary>
struct OpAttr : detail::Base<OrtOpAttr> {
OpAttr(const char* name, const void* data, int len, OrtOpAttrType type);
};
/**
* Macro that logs a message using the provided logger. Throws an exception if OrtApi::Logger_LogMessage fails.
* Example: ORT_CXX_LOG(logger, ORT_LOGGING_LEVEL_INFO, "Log a message");
*
* \param logger The Ort::Logger instance to use. Must be a value or reference.
* \param message_severity The logging severity level of the message.
* \param message A null-terminated UTF-8 message to log.
*/
#define ORT_CXX_LOG(logger, message_severity, message) \
do { \
if (message_severity >= logger.GetLoggingSeverityLevel()) { \
Ort::ThrowOnError(logger.LogMessage(message_severity, ORT_FILE, __LINE__, \
static_cast<const char*>(__FUNCTION__), message)); \
} \
} while (false)
/**
* Macro that logs a message using the provided logger. Can be used in noexcept code since errors are silently ignored.
* Example: ORT_CXX_LOG_NOEXCEPT(logger, ORT_LOGGING_LEVEL_INFO, "Log a message");
*
* \param logger The Ort::Logger instance to use. Must be a value or reference.
* \param message_severity The logging severity level of the message.
* \param message A null-terminated UTF-8 message to log.
*/
#define ORT_CXX_LOG_NOEXCEPT(logger, message_severity, message) \
do { \
if (message_severity >= logger.GetLoggingSeverityLevel()) { \
static_cast<void>(logger.LogMessage(message_severity, ORT_FILE, __LINE__, \
static_cast<const char*>(__FUNCTION__), message)); \
} \
} while (false)
/**
* Macro that logs a printf-like formatted message using the provided logger. Throws an exception if
* OrtApi::Logger_LogMessage fails or if a formatting error occurs.
* Example: ORT_CXX_LOGF(logger, ORT_LOGGING_LEVEL_INFO, "Log an int: %d", 12);
*
* \param logger The Ort::Logger instance to use. Must be a value or reference.
* \param message_severity The logging severity level of the message.
* \param format A null-terminated UTF-8 format string forwarded to a printf-like function.
* Refer to https://en.cppreference.com/w/cpp/io/c/fprintf for information on valid formats.
* \param ... Zero or more variadic arguments referenced by the format string.
*/
#define ORT_CXX_LOGF(logger, message_severity, /*format,*/...) \
do { \
if (message_severity >= logger.GetLoggingSeverityLevel()) { \
Ort::ThrowOnError(logger.LogFormattedMessage(message_severity, ORT_FILE, __LINE__, \
static_cast<const char*>(__FUNCTION__), __VA_ARGS__)); \
} \
} while (false)
/**
* Macro that logs a printf-like formatted message using the provided logger. Can be used in noexcept code since errors
* are silently ignored.
* Example: ORT_CXX_LOGF_NOEXCEPT(logger, ORT_LOGGING_LEVEL_INFO, "Log an int: %d", 12);
*
* \param logger The Ort::Logger instance to use. Must be a value or reference.
* \param message_severity The logging severity level of the message.
* \param format A null-terminated UTF-8 format string forwarded to a printf-like function.
* Refer to https://en.cppreference.com/w/cpp/io/c/fprintf for information on valid formats.
* \param ... Zero or more variadic arguments referenced by the format string.
*/
#define ORT_CXX_LOGF_NOEXCEPT(logger, message_severity, /*format,*/...) \
do { \
if (message_severity >= logger.GetLoggingSeverityLevel()) { \
static_cast<void>(logger.LogFormattedMessage(message_severity, ORT_FILE, __LINE__, \
static_cast<const char*>(__FUNCTION__), __VA_ARGS__)); \
} \
} while (false)
/// <summary>
/// This class represents an ONNX Runtime logger that can be used to log information with an
/// associated severity level and source code location (file path, line number, function name).
///
/// A Logger can be obtained from within custom operators by calling Ort::KernelInfo::GetLogger().
/// Instances of Ort::Logger are the size of two pointers and can be passed by value.
///
/// Use the ORT_CXX_LOG macros to ensure the source code location is set properly from the callsite
/// and to take advantage of a cached logging severity level that can bypass calls to the underlying C API.
/// </summary>
struct Logger {
/**
* Creates an empty Ort::Logger. Must be initialized from a valid Ort::Logger before use.
*/
Logger() = default;
/**
* Creates an empty Ort::Logger. Must be initialized from a valid Ort::Logger before use.
*/
explicit Logger(std::nullptr_t) {}
/**
* Creates a logger from an ::OrtLogger instance. Caches the logger's current severity level by calling
* OrtApi::Logger_GetLoggingSeverityLevel. Throws an exception if OrtApi::Logger_GetLoggingSeverityLevel fails.
*
* \param logger The ::OrtLogger to wrap.
*/
explicit Logger(const OrtLogger* logger);
~Logger() = default;
Logger(const Logger&) = default;
Logger& operator=(const Logger&) = default;
Logger(Logger&& v) noexcept = default;
Logger& operator=(Logger&& v) noexcept = default;
/**
* Returns the logger's current severity level from the cached member.
*
* \return The current ::OrtLoggingLevel.
*/
OrtLoggingLevel GetLoggingSeverityLevel() const noexcept;
/**
* Logs the provided message via OrtApi::Logger_LogMessage. Use the ORT_CXX_LOG or ORT_CXX_LOG_NOEXCEPT
* macros to properly set the source code location and to use the cached severity level to potentially bypass
* calls to the underlying C API.
*
* \param log_severity_level The message's logging severity level.
* \param file_path The filepath of the file in which the message is logged. Usually the value of ORT_FILE.
* \param line_number The file line number in which the message is logged. Usually the value of __LINE__.
* \param func_name The name of the function in which the message is logged. Usually the value of __FUNCTION__.
* \param message The message to log.
* \return A Ort::Status value to indicate error or success.
*/
Status LogMessage(OrtLoggingLevel log_severity_level, const ORTCHAR_T* file_path, int line_number,
const char* func_name, const char* message) const noexcept;
/**
* Logs a printf-like formatted message via OrtApi::Logger_LogMessage. Use the ORT_CXX_LOGF or ORT_CXX_LOGF_NOEXCEPT
* macros to properly set the source code location and to use the cached severity level to potentially bypass
* calls to the underlying C API. Returns an error status if a formatting error occurs.
*
* \param log_severity_level The message's logging severity level.
* \param file_path The filepath of the file in which the message is logged. Usually the value of ORT_FILE.
* \param line_number The file line number in which the message is logged. Usually the value of __LINE__.
* \param func_name The name of the function in which the message is logged. Usually the value of __FUNCTION__.
* \param format A null-terminated UTF-8 format string forwarded to a printf-like function.
* Refer to https://en.cppreference.com/w/cpp/io/c/fprintf for information on valid formats.
* \param args Zero or more variadic arguments referenced by the format string.
* \return A Ort::Status value to indicate error or success.
*/
template <typename... Args>
Status LogFormattedMessage(OrtLoggingLevel log_severity_level, const ORTCHAR_T* file_path, int line_number,
const char* func_name, const char* format, Args&&... args) const noexcept;
private:
const OrtLogger* logger_{};
OrtLoggingLevel cached_severity_level_{};
};
/// <summary>
/// This class wraps a raw pointer OrtKernelContext* that is being passed
/// to the custom kernel Compute() method. Use it to safely access context
/// attributes, input and output parameters with exception safety guarantees.
/// See usage example in onnxruntime/test/testdata/custom_op_library/custom_op_library.cc
/// </summary>
struct KernelContext {
explicit KernelContext(OrtKernelContext* context);
size_t GetInputCount() const;
size_t GetOutputCount() const;
ConstValue GetInput(size_t index) const;
UnownedValue GetOutput(size_t index, const int64_t* dim_values, size_t dim_count) const;
UnownedValue GetOutput(size_t index, const std::vector<int64_t>& dims) const;
void* GetGPUComputeStream() const;
Logger GetLogger() const;
OrtAllocator* GetAllocator(const OrtMemoryInfo& memory_info) const;
private:
OrtKernelContext* ctx_;
};
struct KernelInfo;
namespace detail {
namespace attr_utils {
void GetAttr(const OrtKernelInfo* p, const char* name, float&);
void GetAttr(const OrtKernelInfo* p, const char* name, int64_t&);
void GetAttr(const OrtKernelInfo* p, const char* name, std::string&);
void GetAttrs(const OrtKernelInfo* p, const char* name, std::vector<float>&);
void GetAttrs(const OrtKernelInfo* p, const char* name, std::vector<int64_t>&);
} // namespace attr_utils
template <typename T>
struct KernelInfoImpl : Base<T> {
using B = Base<T>;
using B::B;
KernelInfo Copy() const;
template <typename R> // R is only implemented for float, int64_t, and string
R GetAttribute(const char* name) const {
R val;
attr_utils::GetAttr(this->p_, name, val);
return val;
}
template <typename R> // R is only implemented for std::vector<float>, std::vector<int64_t>
std::vector<R> GetAttributes(const char* name) const {
std::vector<R> result;
attr_utils::GetAttrs(this->p_, name, result);
return result;
}
Value GetTensorAttribute(const char* name, OrtAllocator* allocator) const;
size_t GetInputCount() const;
size_t GetOutputCount() const;
std::string GetInputName(size_t index) const;
std::string GetOutputName(size_t index) const;
TypeInfo GetInputTypeInfo(size_t index) const;
TypeInfo GetOutputTypeInfo(size_t index) const;
ConstValue GetTensorConstantInput(size_t index, int* is_constant) const;
std::string GetNodeName() const;
Logger GetLogger() const;
};
} // namespace detail
using ConstKernelInfo = detail::KernelInfoImpl<detail::Unowned<const OrtKernelInfo>>;
/// <summary>
/// This struct owns the OrtKernInfo* pointer when a copy is made.
/// For convenient wrapping of OrtKernelInfo* passed to kernel constructor
/// and query attributes, warp the pointer with Ort::Unowned<KernelInfo> instance
/// so it does not destroy the pointer the kernel does not own.
/// </summary>
struct KernelInfo : detail::KernelInfoImpl<OrtKernelInfo> {
explicit KernelInfo(std::nullptr_t) {} ///< Create an empty instance to initialize later
explicit KernelInfo(OrtKernelInfo* info); ///< Take ownership of the instance
ConstKernelInfo GetConst() const { return ConstKernelInfo{this->p_}; }
};
/// <summary>
/// Create and own custom defined operation.
/// </summary>
struct Op : detail::Base<OrtOp> {
explicit Op(std::nullptr_t) {} ///< Create an empty Operator object, must be assigned a valid one to be used
explicit Op(OrtOp*); ///< Take ownership of the OrtOp
static Op Create(const OrtKernelInfo* info, const char* op_name, const char* domain,
int version, const char** type_constraint_names,
const ONNXTensorElementDataType* type_constraint_values,
size_t type_constraint_count,
const OpAttr* attr_values,
size_t attr_count,
size_t input_count, size_t output_count);
void Invoke(const OrtKernelContext* context,
const Value* input_values,
size_t input_count,
Value* output_values,
size_t output_count);
// For easier refactoring
void Invoke(const OrtKernelContext* context,
const OrtValue* const* input_values,
size_t input_count,
OrtValue* const* output_values,
size_t output_count);
};
template <typename TOp, typename TKernel, bool WithStatus = false>
struct CustomOpBase : OrtCustomOp {
CustomOpBase() {
OrtCustomOp::version = ORT_API_VERSION;
OrtCustomOp::GetName = [](const OrtCustomOp* this_) { return static_cast<const TOp*>(this_)->GetName(); };
OrtCustomOp::GetExecutionProviderType = [](const OrtCustomOp* this_) { return static_cast<const TOp*>(this_)->GetExecutionProviderType(); };
OrtCustomOp::GetInputTypeCount = [](const OrtCustomOp* this_) { return static_cast<const TOp*>(this_)->GetInputTypeCount(); };
OrtCustomOp::GetInputType = [](const OrtCustomOp* this_, size_t index) { return static_cast<const TOp*>(this_)->GetInputType(index); };
OrtCustomOp::GetInputMemoryType = [](const OrtCustomOp* this_, size_t index) { return static_cast<const TOp*>(this_)->GetInputMemoryType(index); };
OrtCustomOp::GetOutputTypeCount = [](const OrtCustomOp* this_) { return static_cast<const TOp*>(this_)->GetOutputTypeCount(); };
OrtCustomOp::GetOutputType = [](const OrtCustomOp* this_, size_t index) { return static_cast<const TOp*>(this_)->GetOutputType(index); };
#if defined(_MSC_VER) && !defined(__clang__)
#pragma warning(push)
#pragma warning(disable : 26409)
#endif
OrtCustomOp::KernelDestroy = [](void* op_kernel) { delete static_cast<TKernel*>(op_kernel); };
#if defined(_MSC_VER) && !defined(__clang__)
#pragma warning(pop)
#endif
OrtCustomOp::GetInputCharacteristic = [](const OrtCustomOp* this_, size_t index) { return static_cast<const TOp*>(this_)->GetInputCharacteristic(index); };
OrtCustomOp::GetOutputCharacteristic = [](const OrtCustomOp* this_, size_t index) { return static_cast<const TOp*>(this_)->GetOutputCharacteristic(index); };
OrtCustomOp::GetVariadicInputMinArity = [](const OrtCustomOp* this_) { return static_cast<const TOp*>(this_)->GetVariadicInputMinArity(); };
OrtCustomOp::GetVariadicInputHomogeneity = [](const OrtCustomOp* this_) { return static_cast<int>(static_cast<const TOp*>(this_)->GetVariadicInputHomogeneity()); };
OrtCustomOp::GetVariadicOutputMinArity = [](const OrtCustomOp* this_) { return static_cast<const TOp*>(this_)->GetVariadicOutputMinArity(); };
OrtCustomOp::GetVariadicOutputHomogeneity = [](const OrtCustomOp* this_) { return static_cast<int>(static_cast<const TOp*>(this_)->GetVariadicOutputHomogeneity()); };
#ifdef __cpp_if_constexpr
if constexpr (WithStatus) {
#else
if (WithStatus) {
#endif
OrtCustomOp::CreateKernelV2 = [](const OrtCustomOp* this_, const OrtApi* api, const OrtKernelInfo* info, void** op_kernel) -> OrtStatusPtr {
return static_cast<const TOp*>(this_)->CreateKernelV2(*api, info, op_kernel);
};
OrtCustomOp::KernelComputeV2 = [](void* op_kernel, OrtKernelContext* context) -> OrtStatusPtr {
return static_cast<TKernel*>(op_kernel)->ComputeV2(context);
};
} else {
OrtCustomOp::CreateKernelV2 = nullptr;
OrtCustomOp::KernelComputeV2 = nullptr;
OrtCustomOp::CreateKernel = [](const OrtCustomOp* this_, const OrtApi* api, const OrtKernelInfo* info) { return static_cast<const TOp*>(this_)->CreateKernel(*api, info); };
OrtCustomOp::KernelCompute = [](void* op_kernel, OrtKernelContext* context) {
static_cast<TKernel*>(op_kernel)->Compute(context);
};
}
}
// Default implementation of GetExecutionProviderType that returns nullptr to default to the CPU provider
const char* GetExecutionProviderType() const { return nullptr; }
// Default implementations of GetInputCharacteristic() and GetOutputCharacteristic() below
// (inputs and outputs are required by default)
OrtCustomOpInputOutputCharacteristic GetInputCharacteristic(size_t /*index*/) const {
return OrtCustomOpInputOutputCharacteristic::INPUT_OUTPUT_REQUIRED;
}
OrtCustomOpInputOutputCharacteristic GetOutputCharacteristic(size_t /*index*/) const {
return OrtCustomOpInputOutputCharacteristic::INPUT_OUTPUT_REQUIRED;
}
// Default implemention of GetInputMemoryType() that returns OrtMemTypeDefault
OrtMemType GetInputMemoryType(size_t /*index*/) const {
return OrtMemTypeDefault;
}
// Default implementation of GetVariadicInputMinArity() returns 1 to specify that a variadic input
// should expect at least 1 argument.
int GetVariadicInputMinArity() const {
return 1;
}
// Default implementation of GetVariadicInputHomegeneity() returns true to specify that all arguments
// to a variadic input should be of the same type.
bool GetVariadicInputHomogeneity() const {
return true;
}
// Default implementation of GetVariadicOutputMinArity() returns 1 to specify that a variadic output
// should produce at least 1 output value.
int GetVariadicOutputMinArity() const {
return 1;
}
// Default implementation of GetVariadicOutputHomegeneity() returns true to specify that all output values
// produced by a variadic output should be of the same type.
bool GetVariadicOutputHomogeneity() const {
return true;
}
// Declare list of session config entries used by this Custom Op.
// Implement this function in order to get configs from CustomOpBase::GetSessionConfigs().
// This default implementation returns an empty vector of config entries.
std::vector<std::string> GetSessionConfigKeys() const {
return std::vector<std::string>{};
}
protected:
// Helper function that returns a map of session config entries specified by CustomOpBase::GetSessionConfigKeys.
void GetSessionConfigs(std::unordered_map<std::string, std::string>& out, ConstSessionOptions options) const;
};
} // namespace Ort
#include "onnxruntime_cxx_inline.h"
|