File size: 7,598 Bytes
b0c0df0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# This notebook will guide you to make correct format of Huggingface dataset, in proper parquet format and visualizable in Huggingface dataset hub.\n",
"# We will take the example of the dataset \"Otter-AI/MMVet\" and convert it to the proper format."
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/tiger/miniconda3/envs/llava/lib/python3.10/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
" from .autonotebook import tqdm as notebook_tqdm\n",
"100%|ββββββββββ| 499/499 [00:18<00:00, 26.87it/s]\n"
]
}
],
"source": [
"from datasets import Dataset, Features, Value, Image\n",
"import pandas as pd\n",
"from tqdm import tqdm\n",
"import os\n",
"\n",
"# Define the features for the dataset\n",
"features = Features(\n",
" {\n",
" \"video_name\": Value(dtype=\"string\"),\n",
" \"question\": Value(dtype=\"string\"),\n",
" \"answer\": Value(dtype=\"string\"),\n",
" }\n",
")\n",
"\n",
"df_items = {\n",
" \"video_name\": [],\n",
" \"question\": [],\n",
" \"answer\": [],\n",
"}\n",
"\n",
"description_root = \"/mnt/bn/vl-research/workspace/yhzhang/data/llava_video/video_detail_description/Test_Human_Annotated_Captions\"\n",
"videos = os.listdir(description_root)\n",
"for cur_video_name in tqdm(videos):\n",
" sample_set = {}\n",
" video_name = cur_video_name.split(\".\")[0]\n",
" with open(f\"{description_root}/{cur_video_name}\", encoding=\"utf-8-sig\") as f:\n",
" description = f.readlines()[0]\n",
" question = \"Please provide a detailed description of the video, focusing on the main subjects, their actions, and the background scenes\"\n",
" df_items[\"video_name\"].append(video_name)\n",
" df_items[\"question\"].append(question)\n",
" df_items[\"answer\"].append(description)\n",
" # Add other fields as necessary\n",
"\n",
"df_items = pd.DataFrame(df_items)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>video_name</th>\n",
" <th>question</th>\n",
" <th>answer</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>v_-6dz6tBH77I</td>\n",
" <td>Please provide a detailed description of the v...</td>\n",
" <td>The video is of a man in athletic clothes stan...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>v_-D1gdv_gQyw</td>\n",
" <td>Please provide a detailed description of the v...</td>\n",
" <td>The video begins with a man holding a knife in...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>v_-HpCLXdtcas</td>\n",
" <td>Please provide a detailed description of the v...</td>\n",
" <td>A man is standing behind a barbell placed on t...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>v_-IMXSEIabMM</td>\n",
" <td>Please provide a detailed description of the v...</td>\n",
" <td>The video starts with two people standing behi...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>v_-MbZ-W0AbN0</td>\n",
" <td>Please provide a detailed description of the v...</td>\n",
" <td>The video starts with an advertisement for fur...</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" video_name question \\\n",
"0 v_-6dz6tBH77I Please provide a detailed description of the v... \n",
"1 v_-D1gdv_gQyw Please provide a detailed description of the v... \n",
"2 v_-HpCLXdtcas Please provide a detailed description of the v... \n",
"3 v_-IMXSEIabMM Please provide a detailed description of the v... \n",
"4 v_-MbZ-W0AbN0 Please provide a detailed description of the v... \n",
"\n",
" answer \n",
"0 The video is of a man in athletic clothes stan... \n",
"1 The video begins with a man holding a knife in... \n",
"2 A man is standing behind a barbell placed on t... \n",
"3 The video starts with two people standing behi... \n",
"4 The video starts with an advertisement for fur... "
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_items.head()"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"dataset = Dataset.from_pandas(df_items, features=features)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Creating parquet from Arrow format: 100%|ββββββββββ| 1/1 [00:00<00:00, 340.67ba/s]\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Uploading the dataset shards: 100%|ββββββββββ| 1/1 [00:00<00:00, 2.46it/s]\n"
]
},
{
"data": {
"text/plain": [
"CommitInfo(commit_url='https://huggingface.co/datasets/lmms-lab/VideoDetailDescription/commit/ad8e58fa42ad8daf56808724a4bcf4724688194e', commit_message='Upload dataset', commit_description='', oid='ad8e58fa42ad8daf56808724a4bcf4724688194e', pr_url=None, pr_revision=None, pr_num=None)"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"hub_dataset_path = \"lmms-lab/VideoDetailDescription\"\n",
"dataset.push_to_hub(repo_id=hub_dataset_path, split=\"test\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "lmms-eval",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.14"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|