cstr
/

Automatic Speech Recognition
Transformers
German
Eval Results
Inference Endpoints
File size: 5,336 Bytes
037b1f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
---
license: apache-2.0
language:
- de
library_name: transformers
pipeline_tag: automatic-speech-recognition
model-index:
- name: whisper-large-v3-turbo-german by Florian Zimmermeister @primeLine
  results:
  - task:
      type: automatic-speech-recognition
      name: Speech Recognition
    dataset:
      name: German ASR Data-Mix
      type: flozi00/asr-german-mixed
    metrics:
    - type: wer
      value: 4.77 %
      name: Test WER
datasets:
- flozi00/asr-german-mixed
- flozi00/asr-german-mixed-evals
base_model:
- primeline/whisper-large-v3-german
---
## Quant

This is only a ggml from [primeline/whisper-large-v3-turbo-german](https://huggingface.co/primeline/whisper-large-v3-turbo-german) 
made with https://github.com/ggerganov/whisper.cpp/blob/master/models/convert-h5-to-ggml.py 
(minimally changed).

## Modelcard from primeline/whisper-large-v3-german


### Summary
This model map provides information about a model based on Whisper Large v3 that has been fine-tuned for speech recognition in German. Whisper is a powerful speech recognition platform developed by OpenAI. This model has been specially optimized for processing and recognizing German speech.



### Applications
This model can be used in various application areas, including

- Transcription of spoken German language
- Voice commands and voice control
- Automatic subtitling for German videos
- Voice-based search queries in German
- Dictation functions in word processing programs


## Model family

| Model                            | Parameters | link                                                         |
|----------------------------------|------------|--------------------------------------------------------------|
| Whisper large v3 german          | 1.54B      | [link](https://huggingface.co/primeline/whisper-large-v3-german) |
| Whisper large v3 turbo german    | 809M       | [link](https://huggingface.co/primeline/whisper-large-v3-turbo-german)
| Distil-whisper large v3 german   | 756M       | [link](https://huggingface.co/primeline/distil-whisper-large-v3-german) |
| tiny whisper                     | 37.8M      | [link](https://huggingface.co/primeline/whisper-tiny-german) |


## Evaluations

| Dataset                         | openai-whisper-large-v3-turbo | openai-whisper-large-v3 | primeline-whisper-large-v3-german | nyrahealth-CrisperWhisper | primeline-whisper-large-v3-turbo-german |
|---------------------------------|-------------------------------|-------------------------|----------------------------------|---------------------------|----------------------------------------|
| common_voice_19_0               | 6.31                          | 5.84                    | 4.30                             | **4.14**                      | 4.28                                   |
| Tuda-De                         | 11.45                         | 11.21                   | 9.89                             | 13.88                     | **8.10**                                   |
| multilingual librispeech        | 18.03                         | 17.69                   | 13.46                            | 10.10                     | **4.71**                                   |
| All                             | 14.16                         | 13.79                   | 10.51                            | 8.48                      | **4.75**                                   |


### Training data
The training data for this model includes a large amount of spoken German from various sources. The data was carefully selected and processed to optimize recognition performance.


### Training process
The training of the model was performed with the following hyperparameters

- Batch size: 12288
- Epochs: 3
- Learning rate: 1e-6
- Data augmentation: No
- Optimizer: [Ademamix](https://arxiv.org/abs/2409.03137)


### How to use

```python
import torch
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
from datasets import load_dataset
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model_id = "primeline/whisper-large-v3-turbo-german"
model = AutoModelForSpeechSeq2Seq.from_pretrained(
    model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
)
model.to(device)
processor = AutoProcessor.from_pretrained(model_id)
pipe = pipeline(
    "automatic-speech-recognition",
    model=model,
    tokenizer=processor.tokenizer,
    feature_extractor=processor.feature_extractor,
    max_new_tokens=128,
    chunk_length_s=30,
    batch_size=16,
    return_timestamps=True,
    torch_dtype=torch_dtype,
    device=device,
)
dataset = load_dataset("distil-whisper/librispeech_long", "clean", split="validation")
sample = dataset[0]["audio"]
result = pipe(sample)
print(result["text"])
```


## [About us](https://primeline-ai.com/en/)

[![primeline AI](https://primeline-ai.com/wp-content/uploads/2024/02/pl_ai_bildwortmarke_original.svg)](https://primeline-ai.com/en/)


Your partner for AI infrastructure in Germany <br>
Experience the powerful AI infrastructure that drives your ambitions in Deep Learning, Machine Learning & High-Performance Computing. Optimized for AI training and inference.



Model author: [Florian Zimmermeister](https://huggingface.co/flozi00)