cstr's picture
Update README.md
12a7432 verified
metadata
tags:
  - merge
  - mergekit
base_model:
  - cstr/llama3-8b-spaetzle-v31
  - cstr/llama3-8b-spaetzle-v28
  - cstr/llama3-8b-spaetzle-v26
  - cstr/llama3-8b-spaetzle-v20
license: llama3
language:
  - de
  - en

llama3-8b-spaetzle-v33

This is a merge of the following models:

It attempts a compromise in usefulness for German and English tasks.

For GGUF quants see cstr/llama3-8b-spaetzle-v33-GGUF,

Benchmarks

It achieves on EQ-Bench v2_de as q4km (old version without pre-tokenizer-fix) quants 66.59 (171 of 171 parseable) and 73.17 on v2 (english) (171/171).

For the int4-inc quants:

Benchmark Score
Average 66.13
ARC-c 59.81
ARC-e 85.27
Boolq 84.10
HellaSwag 62.47
Lambada 73.28
MMLU 64.11
OpenbookQA 37.2
Piqa 80.30
TruthfulQA 50.21
Winogrande 73.72

Nous

Model Average AGIEval GPT4All TruthfulQA Bigbench
mlabonne/Daredevil-8B πŸ“„ 55.87 44.13 73.52 59.05 46.77
cstr/llama3-8b-spaetzle-v33 πŸ“„ 55.26 42.61 73.9 59.28 45.25
mlabonne/Daredevil-8B-abliterated πŸ“„ 55.06 43.29 73.33 57.47 46.17
NousResearch/Hermes-2-Theta-Llama-3-8B πŸ“„ 54.28 43.9 72.62 56.36 44.23
openchat/openchat-3.6-8b-20240522 πŸ“„ 53.49 44.03 73.67 49.78 46.48
mlabonne/Llama-3-8B-Instruct-abliterated-dpomix πŸ“„ 52.26 41.6 69.95 54.22 43.26
meta-llama/Meta-Llama-3-8B-Instruct πŸ“„ 51.34 41.22 69.86 51.65 42.64
failspy/Meta-Llama-3-8B-Instruct-abliterated-v3 πŸ“„ 51.21 40.23 69.5 52.44 42.69
mlabonne/OrpoLlama-3-8B πŸ“„ 48.63 34.17 70.59 52.39 37.36
meta-llama/Meta-Llama-3-8B πŸ“„ 45.42 31.1 69.95 43.91 36.7

🧩 Configuration

models:
  - model: cstr/llama3-8b-spaetzle-v20
    # no parameters necessary for base model
  - model: cstr/llama3-8b-spaetzle-v31
    parameters:
      density: 0.65
      weight: 0.25
  - model: cstr/llama3-8b-spaetzle-v28
    parameters:
      density: 0.65
      weight: 0.25
  - model: cstr/llama3-8b-spaetzle-v26
    parameters:
      density: 0.65
      weight: 0.15
merge_method: dare_ties
base_model: cstr/llama3-8b-spaetzle-v20
parameters:
  int8_mask: true
dtype: bfloat16
random_seed: 0
tokenizer_source: base

πŸ’» Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "cstr/llama3-8b-spaetzle-v33"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])