File size: 43,886 Bytes
9809caf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f54f5f3
9809caf
f54f5f3
9809caf
 
 
 
 
ca63570
 
9809caf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
---
language:
- en
- fr
- de
- es
- it
- pt
- zh
- ja
- ru
- ko
license: other
license_name: mrl
inference: false
license_link: https://mistral.ai/licenses/MRL-0.1.md
library_name: llama.cpp
---
# GGUF quants

These are (early testing) q4_k_m GGUF quants of Mistral/Ministral-8B-Instruct-2410.

Made with llama.cpp b3634, slightly modified.

They are for research use e.g. in llama.cpp and wrappers (like ollama), as covered by mrl license, as below.

Note that until llama.cpp implements [sliding window](https://github.com/mistralai/mistral-inference/commit/6428ccf99e4fa6acdb0176d5c8d77b2878c75040?diff=unified#diff-451990ec6b235948f7e86fc9004de9e452a94fe5c5c55d384745d149fe2b290e), probably best use it with a context size <= 2k.

Original model card below.

  # Mistral AI Research License

  If You want to use a Mistral Model, a Derivative or an Output for any purpose that is not expressly authorized under this Agreement, You must request a license from Mistral AI, which Mistral AI may grant to You in Mistral AI's sole discretion. To discuss such a license, please contact Mistral AI via the website contact form: https://mistral.ai/contact/

  ## 1. Scope and acceptance

  **1.1. Scope of the Agreement.** This Agreement applies to any use, modification, or Distribution of any Mistral Model by You, regardless of the source You obtained a copy of such Mistral Model.

  **1.2. Acceptance.** By accessing, using, modifying, Distributing a Mistral Model, or by creating, using or distributing a Derivative of the Mistral Model, You agree to be bound by this Agreement.

  **1.3. Acceptance on behalf of a third-party.** If You accept this Agreement on behalf of Your employer or another person or entity, You warrant and represent that You have the authority to act and accept this Agreement on their behalf. In such a case, the word "You" in this Agreement will refer to Your employer or such other person or entity.

  ## 2. License

  **2.1. Grant of rights**.  Subject to Section 3 below, Mistral AI hereby grants You a non-exclusive, royalty-free, worldwide, non-sublicensable, non-transferable, limited license to use, copy, modify, and Distribute under the conditions provided in Section 2.2 below, the Mistral Model and any Derivatives made by or for Mistral AI and to create Derivatives of the Mistral Model.

  **2.2. Distribution of Mistral Model and Derivatives made by or for Mistral AI.** Subject to Section 3 below, You may Distribute copies of the Mistral Model and/or Derivatives made by or for Mistral AI, under the following conditions:
  You must make available a copy of this Agreement to third-party recipients of the Mistral Models and/or Derivatives made by or for Mistral AI you Distribute, it being specified that any rights to use the Mistral Models and/or Derivatives made by or for Mistral AI shall be directly granted by Mistral AI to said third-party recipients pursuant to the Mistral AI Research License agreement executed between these parties;
  You must retain in all copies of the Mistral Models the following attribution notice within a "Notice" text file distributed as part of such copies: "Licensed by Mistral AI under the Mistral AI Research License".

  **2.3. Distribution of Derivatives made by or for You.** Subject to Section 3 below, You may Distribute any Derivatives made by or for You under additional or different terms and conditions, provided that:
  In any event, the use and modification of Mistral Model and/or Derivatives made by or for Mistral AI shall remain governed by the terms and conditions of this Agreement;
  You include in any such Derivatives made by or for You prominent notices stating that You modified the concerned Mistral Model; and
  Any terms and conditions You impose on any third-party recipients relating to Derivatives made by or for You shall neither limit such third-party recipients' use of the Mistral Model or any Derivatives made by or for Mistral AI in accordance with the Mistral AI Research License nor conflict with any of its terms and conditions.

  ## 3. Limitations

  **3.1. Misrepresentation.** You must not misrepresent or imply, through any means, that the Derivatives made by or for You and/or any modified version of the Mistral Model You Distribute under your name and responsibility is an official product of Mistral AI or has been endorsed, approved or validated by Mistral AI, unless You are authorized by Us to do so in writing.

  **3.2. Usage Limitation.** You shall only use the Mistral Models, Derivatives (whether or not created by Mistral AI) and Outputs for Research Purposes.

  ## 4. Intellectual Property

  **4.1. Trademarks.** No trademark licenses are granted under this Agreement, and in connection with the Mistral Models, You may not use any name or mark owned by or associated with Mistral AI or any of its affiliates, except (i) as required for reasonable and customary use in describing and Distributing the Mistral Models and Derivatives made by or for Mistral AI and (ii) for attribution purposes as required by this Agreement.

  **4.2. Outputs.** We claim no ownership rights in and to the Outputs. You are solely responsible for the Outputs You generate and their subsequent uses in accordance with this Agreement. Any Outputs shall be subject to the restrictions set out in Section 3 of this Agreement.

  **4.3. Derivatives.** By entering into this Agreement, You accept that any Derivatives that You may create or that may be created for You shall be subject to the restrictions set out in Section 3 of this Agreement.

  ## 5. Liability

  **5.1. Limitation of liability.** In no event, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall Mistral AI be liable to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising as a result of this Agreement or out of the use or inability to use the Mistral Models and Derivatives (including but not limited to damages for loss of data, loss of goodwill, loss of expected profit or savings, work stoppage, computer failure or malfunction, or any damage caused by malware or security breaches), even if  Mistral AI has been advised of the possibility of such damages.

  **5.2. Indemnification.** You agree to indemnify and hold harmless Mistral AI from and against any claims, damages, or losses arising out of or related to Your use or Distribution of the Mistral Models and Derivatives.

  ## 6. Warranty

  **6.1. Disclaimer.** Unless required by applicable law or prior agreed to by Mistral AI in writing, Mistral AI provides the Mistral Models and Derivatives on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. Mistral AI does not represent nor warrant that the Mistral Models and Derivatives will be error-free, meet Your or any third party's requirements, be secure or will allow You or any third party to achieve any kind of result or generate any kind of content. You are solely responsible for determining the appropriateness of using or Distributing the Mistral Models and Derivatives and assume any risks associated with Your exercise of rights under this Agreement.

  ## 7. Termination

  **7.1. Term.** This Agreement is effective as of the date of your acceptance of this Agreement or access to the concerned Mistral Models or Derivatives and will continue until terminated in accordance with the following terms.

  **7.2. Termination.** Mistral AI may terminate this Agreement at any time if You are in breach of this Agreement. Upon termination of this Agreement, You must cease to use all Mistral Models and Derivatives and shall permanently delete any copy thereof. The following provisions, in their relevant parts, will survive any termination or expiration of this Agreement, each for the duration necessary to achieve its own intended purpose (e.g. the liability provision will survive until the end of the applicable limitation period):Sections 5 (Liability), 6(Warranty), 7 (Termination) and 8 (General Provisions).

  **7.3. Litigation.** If You initiate any legal action or proceedings against Us or any other entity (including a cross-claim or counterclaim in a lawsuit), alleging that the Model or a Derivative, or any part thereof, infringe upon intellectual property or other rights owned or licensable by You, then any licenses granted to You under this Agreement will immediately terminate as of the date such legal action or claim is filed or initiated.

  ## 8. General provisions

  **8.1. Governing laws.** This Agreement will be governed by the laws of France, without regard to choice of law principles, and the UN Convention on Contracts for the International Sale of Goods does not apply to this Agreement.

  **8.2. Competent jurisdiction.** The courts of Paris shall have exclusive jurisdiction of any dispute arising out of this Agreement.

  **8.3. Severability.** If any provision of this Agreement is held to be invalid, illegal or unenforceable, the remaining provisions shall be unaffected thereby and remain valid as if such provision had not been set forth herein.

  ## 9. Definitions

  "Agreement": means this Mistral AI Research License agreement governing the access, use, and Distribution of the Mistral Models, Derivatives and Outputs.

  "Derivative": means any (i) modified version of the Mistral Model (including but not limited to any customized or fine-tuned version thereof), (ii) work based on the Mistral Model, or (iii) any other derivative work thereof.

  "Distribution", "Distributing", "Distribute" or "Distributed": means supplying, providing or making available, by any means, a copy of the Mistral Models and/or the Derivatives as the case may be, subject to Section 3 of this Agreement.

  "Mistral AI", "We" or "Us": means Mistral AI, a French société par actions simplifiée registered in the Paris commercial registry under the number 952 418 325, and having its registered seat at 15, rue des Halles, 75001 Paris.

  "Mistral Model": means the foundational large language model(s), and its elements which include algorithms, software, instructed checkpoints, parameters, source code (inference code, evaluation code and, if applicable, fine-tuning code) and any other elements associated thereto made available by Mistral AI under this Agreement, including, if any, the technical documentation, manuals and instructions for the use and operation thereof.

  "Research Purposes": means any use of a Mistral Model,  Derivative, or Output that is solely for (a) personal, scientific or academic research, and (b) for non-profit and non-commercial purposes, and not directly or indirectly connected to any commercial activities or business operations. For illustration purposes, Research Purposes does not include (1) any usage of the Mistral Model, Derivative or Output by individuals or contractors employed in or engaged by companies in the context of (a) their daily tasks, or (b) any activity (including but not limited to any testing or proof-of-concept) that is intended to generate revenue, nor (2) any Distribution by a commercial entity of the Mistral Model, Derivative or Output whether in return for payment or free of charge, in any medium or form, including but not limited to through a hosted or managed service (e.g. SaaS, cloud instances, etc.), or behind a software layer.

  "Outputs": means any content generated by the operation of the Mistral Models or the Derivatives from  a prompt (i.e., text instructions) provided by users. For the avoidance of doubt, Outputs do not include any components of a Mistral Models, such as any fine-tuned versions of the Mistral Models, the weights, or parameters.

  "You": means the individual or entity entering into this Agreement with Mistral AI.

# Model Card for Ministral-8B-Instruct-2410

We introduce two new state-of-the-art models for local intelligence, on-device computing, and at-the-edge use cases. We call them les Ministraux: Ministral 3B and Ministral 8B. 

The Ministral-8B-Instruct-2410 Language Model is an instruct fine-tuned model significantly outperforming existing models of similar size, released under the Mistral Research License.

If you are interested in using Ministral-3B or Ministral-8B commercially, outperforming Mistral-7B, [reach out to us](https://mistral.ai/contact/).

For more details about les Ministraux please refer to our release [blog post](https://mistral.ai/news/ministraux).

## Ministral 8B Key features
- Released under the **Mistral Research License**, reach out to us for a commercial license
- Trained with a **128k context window** with **interleaved sliding-window attention**
- Trained on a large proportion of **multilingual and code data**
- Supports **function calling**
- Vocabulary size of **131k**, using the **V3-Tekken** tokenizer

### Basic Instruct Template (V3-Tekken)

```
<s>[INST]user message[/INST]assistant response</s>[INST]new user message[/INST]
```

*For more information about the tokenizer please refer to [mistral-common](https://github.com/mistralai/mistral-common)*

## Ministral 8B Architecture

| Feature               | Value                |
|:---------------------:|:--------------------:|
| **Architecture**      | Dense Transformer    |
| **Parameters**        | 8,019,808,256        |
| **Layers**            | 36                   |
| **Heads**             | 32                   |
| **Dim**               | 4096                 |
| **KV Heads (GQA)**    | 8                    |
| **Hidden Dim**        | 12288                |
| **Head Dim**          | 128                  |
| **Vocab Size**        | 131,072              |
| **Context Length**    | 128k                 |
| **Attention Pattern** | Ragged (128k,32k,32k,32k) |

## Benchmarks

#### Base Models

<u>Knowledge & Commonsense</u>

| Model       | MMLU | AGIEval | Winogrande | Arc-c | TriviaQA |
|:-------------:|:------:|:---------:|:------------:|:-------:|:----------:|
| Mistral 7B Base  | 62.5 | 42.5    | 74.2   | 67.9  | 62.5 |
| Llama 3.1 8B Base | 64.7 | 44.4    | 74.6       | 46.0  | 60.2     |
| ***Ministral 8B Base*** | ***<u>65.0</u>*** | ***<u>48.3</u>*** | ***<u>75.3</u>***   | ***<u>71.9</u>*** | ***<u>65.5</u>*** |
|  |  |     |        |   |      |
| Gemma 2 2B Base | 52.4 | 33.8    | 68.7   | 42.6  | 47.8     |
| Llama 3.2 3B Base | 56.2 | 37.4    | 59.6       | 43.1  | 50.7     |
| ***Ministral 3B Base*** | ***<u>60.9</u>*** | ***<u>42.1</u>***    | ***<u>72.7</u>***       | ***<u>64.2</u>*** | ***<u>56.7</u>***     |

<u>Code & Math</u>

| Model       | HumanEval pass@1 |GSM8K maj@8 |
|:-------------:|:-------------------:|:---------------:|
| Mistral 7B Base  | 26.8              | 32.0           |
| Llama 3.1 8B Base | ***<u>37.8</u>***          | 42.2           |
| ***Ministral 8B Base***  | 34.8              | ***<u>64.5</u>***       |
|   |               |            |
| Gemma 2 2B  | 20.1              | 35.5           |
| Llama 3.2 3B | 14.6              | 33.5           |
| ***Ministral 3B*** | ***<u>34.2</u>***          | ***<u>50.9</u>***       |

<u>Multilingual</u>

| Model       | French MMLU | German MMLU | Spanish MMLU |
|:-------------:|:-------------:|:-------------:|:-------------:|
| Mistral 7B Base  | 50.6         | 49.6         | 51.4         |
| Llama 3.1 8B Base | 50.8         | 52.8         | 54.6         |
| ***Ministral 8B Base*** | ***<u>57.5</u>***     | ***<u>57.4</u>***     | ***<u>59.6</u>***     |
|   |          |          |          |
| Gemma 2 2B Base  | 41.0         | 40.1         | 41.7         |
| Llama 3.2 3B Base | 42.3         | 42.2         | 43.1         |
| ***Ministral 3B Base*** | ***<u>49.1</u>***     | ***<u>48.3</u>***     | ***<u>49.5</u>***     |

### Instruct Models

<u>Chat/Arena (gpt-4o judge)</u>

| Model       | MTBench | Arena Hard | Wild bench |
|:-------------:|:---------:|:------------:|:------------:|
| Mistral 7B Instruct v0.3  | 6.7     | 44.3       | 33.1       |
| Llama 3.1 8B Instruct | 7.5     | 62.4       | 37.0       |
| Gemma 2 9B Instruct | 7.6     | 68.7       | ***<u>43.8</u>***       |
| ***Ministral 8B Instruct*** | ***<u>8.3</u>*** | ***<u>70.9</u>***   | 41.3   |
|   |      |        |        |
| Gemma 2 2B Instruct  | 7.5     | 51.7       | 32.5       |
| Llama 3.2 3B Instruct | 7.2     | 46.0       | 27.2       |
| ***Ministral 3B Instruct*** | ***<u>8.1</u>*** | ***<u>64.3</u>***   | ***<u>36.3</u>***   |

<u>Code & Math</u>

| Model       | MBPP pass@1 | HumanEval pass@1 | Math maj@1 |
|:-------------:|:-------------:|:------------------:|:-------------:|
| Mistral 7B Instruct v0.3  | 50.2        | 38.4             | 13.2        |
| Gemma 2 9B Instruct | 68.5   | 67.7             | 47.4        |
 Llama 3.1 8B Instruct | 69.7   | 67.1             | 49.3        |
| ***Ministral 8B Instruct*** | ***<u>70.0</u>***        | ***<u>76.8</u>***         | ***<u>54.5</u>***   |
|   |         |              |         |
| Gemma 2 2B Instruct  | 54.5        | 42.7             | 22.8        |
| Llama 3.2 3B Instruct | 64.6        | 61.0             | 38.4        |
| ***Ministral 3B* Instruct** | ***<u>67.7</u>***   | ***<u>77.4</u>***         | ***<u>51.7</u>***   |

<u>Function calling</u>

| Model       | Internal bench |
|:-------------:|:-----------------:|
| Mistral 7B Instruct v0.3  | 6.9             |
| Llama 3.1 8B Instruct | N/A             |
| Gemma 2 9B Instruct | N/A             |
| ***Ministral 8B Instruct*** | ***<u>31.6</u>***       |
|   |              |
| Gemma 2 2B Instruct  | N/A             |
| Llama 3.2 3B Instruct | N/A             |
| ***Ministral 3B Instruct*** | ***<u>28.4</u>***       |

## Usage Examples

### vLLM (recommended)

We recommend using this model with the [vLLM library](https://github.com/vllm-project/vllm)
to implement production-ready inference pipelines.

> [!IMPORTANT]
> Currently vLLM is capped at 32k context size because interleaved attention kernels for paged attention are not yet implemented in vLLM.
> Attention kernels for paged attention are being worked on and as soon as it is fully supported in vLLM, this model card will be updated.
> To take advantage of the full 128k context size we recommend [Mistral Inference](https://huggingface.co/mistralai/Ministral-8B-Instruct-2410#mistral-inference)

**_Installation_**


Make sure you install `vLLM >= v0.6.2`:

```
pip install --upgrade vllm
```

Also make sure you have `mistral_common >= 1.4.4` installed:

```
pip install --upgrade mistral_common
```

You can also make use of a ready-to-go [docker image](https://github.com/vllm-project/vllm/blob/main/Dockerfile).

**_Offline_**

```py
from vllm import LLM
from vllm.sampling_params import SamplingParams

model_name = "mistralai/Ministral-8B-Instruct-2410"

sampling_params = SamplingParams(max_tokens=8192)

# note that running Ministral 8B on a single GPU requires 24 GB of GPU RAM
# If you want to divide the GPU requirement over multiple devices, please add *e.g.* `tensor_parallel=2`
llm = LLM(model=model_name, tokenizer_mode="mistral", config_format="mistral", load_format="mistral")

prompt = "Do we need to think for 10 seconds to find the answer of 1 + 1?"

messages = [
    {
        "role": "user",
        "content": prompt
    },
]

outputs = llm.chat(messages, sampling_params=sampling_params)

print(outputs[0].outputs[0].text)
# You don't need to think for 10 seconds to find the answer to 1 + 1. The answer is 2,
# and you can easily add these two numbers in your mind very quickly without any delay.
```

**_Server_**

You can also use Ministral-8B in a server/client setting. 

1. Spin up a server:


```
vllm serve mistralai/Ministral-8B-Instruct-2410 --tokenizer_mode mistral --config_format mistral --load_format mistral
```

**Note:** Running Ministral-8B on a single GPU requires 24 GB of GPU RAM. 

If you want to divide the GPU requirement over multiple devices, please add *e.g.* `--tensor_parallel=2`

2. And ping the client:

```
curl --location 'http://<your-node-url>:8000/v1/chat/completions' \
--header 'Content-Type: application/json' \
--header 'Authorization: Bearer token' \
--data '{
    "model": "mistralai/Ministral-8B-Instruct-2410",
    "messages": [
      {
        "role": "user",
        "content": "Do we need to think for 10 seconds to find the answer of 1 + 1?"
      }
    ]
}'

```

### Mistral-inference

We recommend using [mistral-inference](https://github.com/mistralai/mistral-inference) to quickly try out / "vibe-check" the model.


**_Install_**

Make sure to have `mistral_inference >= 1.5.0` installed.

```
pip install mistral_inference --upgrade
```

**_Download_**

```py
from huggingface_hub import snapshot_download
from pathlib import Path

mistral_models_path = Path.home().joinpath('mistral_models', '8B-Instruct')
mistral_models_path.mkdir(parents=True, exist_ok=True)

snapshot_download(repo_id="mistralai/Ministral-8B-Instruct-2410", allow_patterns=["params.json", "consolidated.safetensors", "tekken.json"], local_dir=mistral_models_path)
```

### Chat

After installing `mistral_inference`, a `mistral-chat` CLI command should be available in your environment. You can chat with the model using

```
mistral-chat $HOME/mistral_models/8B-Instruct --instruct --max_tokens 256
```

### Passkey detection

> [!IMPORTANT]
> In this example the passkey message has over >100k tokens and mistral-inference
> does not have a chunked pre-fill mechanism. Therefore you will need a lot of
> GPU memory in order to run the below example (80 GB). For a more memory-efficient
> solution we recommend using vLLM.

```py
from mistral_inference.transformer import Transformer
from pathlib import Path
import json
from mistral_inference.generate import generate
from huggingface_hub import hf_hub_download

from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
from mistral_common.protocol.instruct.messages import UserMessage
from mistral_common.protocol.instruct.request import ChatCompletionRequest

def load_passkey_request() -> ChatCompletionRequest:
    passkey_file = hf_hub_download(repo_id="mistralai/Ministral-8B-Instruct-2410", filename="passkey_example.json")

    with open(passkey_file, "r") as f:
        data = json.load(f)

    message_content = data["messages"][0]["content"]
    return ChatCompletionRequest(messages=[UserMessage(content=message_content)])

tokenizer = MistralTokenizer.from_file(f"{mistral_models_path}/tekken.json")
model = Transformer.from_folder(mistral_models_path, softmax_fp32=False)

completion_request = load_passkey_request()

tokens = tokenizer.encode_chat_completion(completion_request).tokens

out_tokens, _ = generate([tokens], model, max_tokens=64, temperature=0.0, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id)
result = tokenizer.instruct_tokenizer.tokenizer.decode(out_tokens[0])

print(result)  # The pass key is 13005.
```


### Instruct following

```py
from mistral_inference.transformer import Transformer
from mistral_inference.generate import generate

from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
from mistral_common.protocol.instruct.messages import UserMessage
from mistral_common.protocol.instruct.request import ChatCompletionRequest


tokenizer = MistralTokenizer.from_file(f"{mistral_models_path}/tekken.json")
model = Transformer.from_folder(mistral_models_path)

completion_request = ChatCompletionRequest(messages=[UserMessage(content="How often does the letter r occur in Mistral?")])

tokens = tokenizer.encode_chat_completion(completion_request).tokens

out_tokens, _ = generate([tokens], model, max_tokens=64, temperature=0.0, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id)
result = tokenizer.instruct_tokenizer.tokenizer.decode(out_tokens[0])

print(result)
```

### Function calling

```py
from mistral_common.protocol.instruct.tool_calls import Function, Tool
from mistral_inference.transformer import Transformer
from mistral_inference.generate import generate

from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
from mistral_common.protocol.instruct.messages import UserMessage
from mistral_common.protocol.instruct.request import ChatCompletionRequest
from mistral_common.tokens.tokenizers.tekken import SpecialTokenPolicy


tokenizer = MistralTokenizer.from_file(f"{mistral_models_path}/tekken.json")
tekken = tokenizer.instruct_tokenizer.tokenizer
tekken.special_token_policy = SpecialTokenPolicy.IGNORE

model = Transformer.from_folder(mistral_models_path)

completion_request = ChatCompletionRequest(
    tools=[
        Tool(
            function=Function(
                name="get_current_weather",
                description="Get the current weather",
                parameters={
                    "type": "object",
                    "properties": {
                        "location": {
                            "type": "string",
                            "description": "The city and state, e.g. San Francisco, CA",
                        },
                        "format": {
                            "type": "string",
                            "enum": ["celsius", "fahrenheit"],
                            "description": "The temperature unit to use. Infer this from the users location.",
                        },
                    },
                    "required": ["location", "format"],
                },
            )
        )
    ],
    messages=[
        UserMessage(content="What's the weather like today in Paris?"),
        ],
)

tokens = tokenizer.encode_chat_completion(completion_request).tokens

out_tokens, _ = generate([tokens], model, max_tokens=64, temperature=0.0, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id)
result = tokenizer.instruct_tokenizer.tokenizer.decode(out_tokens[0])

print(result)
```

## The Mistral AI Team

Albert Jiang, Alexandre Abou Chahine, Alexandre Sablayrolles, Alexis Tacnet, Alodie Boissonnet, Alok Kothari, Amélie Héliou, Andy Lo, Anna Peronnin, Antoine Meunier, Antoine Roux, Antonin Faure, Aritra Paul, Arthur Darcet, Arthur Mensch, Audrey Herblin-Stoop, Augustin Garreau, Austin Birky, Avinash Sooriyarachchi, Baptiste Rozière, Barry Conklin, Bastien Bouillon, Blanche Savary de Beauregard, Carole Rambaud, Caroline Feldman, Charles de Freminville, Charline Mauro, Chih-Kuan Yeh, Chris Bamford, Clement Auguy, Corentin Heintz, Cyriaque Dubois, Devendra Singh Chaplot, Diego Las Casas, Diogo Costa, Eléonore Arcelin, Emma Bou Hanna, Etienne Metzger, Fanny Olivier Autran, Francois Lesage, Garance Gourdel, Gaspard Blanchet, Gaspard Donada Vidal, Gianna Maria Lengyel, Guillaume Bour, Guillaume Lample, Gustave Denis, Harizo Rajaona, Himanshu Jaju, Ian Mack, Ian Mathew, Jean-Malo Delignon, Jeremy Facchetti, Jessica Chudnovsky, Joachim Studnia, Justus Murke, Kartik Khandelwal, Kenneth Chiu, Kevin Riera, Leonard Blier, Leonard Suslian, Leonardo Deschaseaux, Louis Martin, Louis Ternon, Lucile Saulnier, Lélio Renard Lavaud, Sophia Yang, Margaret Jennings, Marie Pellat, Marie Torelli, Marjorie Janiewicz, Mathis Felardos, Maxime Darrin, Michael Hoff, Mickaël Seznec, Misha Jessel Kenyon, Nayef Derwiche, Nicolas Carmont Zaragoza, Nicolas Faurie, Nicolas Moreau, Nicolas Schuhl, Nikhil Raghuraman, Niklas Muhs, Olivier de Garrigues, Patricia Rozé, Patricia Wang, Patrick von Platen, Paul Jacob, Pauline Buche, Pavankumar Reddy Muddireddy, Perry Savas, Pierre Stock, Pravesh Agrawal, Renaud de Peretti, Romain Sauvestre, Romain Sinthe, Roman Soletskyi, Sagar Vaze, Sandeep Subramanian, Saurabh Garg, Soham Ghosh, Sylvain Regnier, Szymon Antoniak, Teven Le Scao, Theophile Gervet, Thibault Schueller, Thibaut Lavril, Thomas Wang, Timothée Lacroix, Valeriia Nemychnikova, Wendy Shang, William El Sayed, William Marshall

# Model Card for Ministral-8B-Instruct-2410

We introduce two new state-of-the-art models for local intelligence, on-device computing, and at-the-edge use cases. We call them les Ministraux: Ministral 3B and Ministral 8B. 

The Ministral-8B-Instruct-2410 Language Model is an instruct fine-tuned model significantly outperforming existing models of similar size, released under the Mistral Research License.

If you are interested in using Ministral-3B or Ministral-8B commercially, outperforming Mistral-7B, [reach out to us](https://mistral.ai/contact/).

For more details about les Ministraux please refer to our release [blog post](https://mistral.ai/news/ministraux).

## Ministral 8B Key features
- Released under the **Mistral Research License**, reach out to us for a commercial license
- Trained with a **128k context window** with **interleaved sliding-window attention**
- Trained on a large proportion of **multilingual and code data**
- Supports **function calling**
- Vocabulary size of **131k**, using the **V3-Tekken** tokenizer

### Basic Instruct Template (V3-Tekken)

```
<s>[INST]user message[/INST]assistant response</s>[INST]new user message[/INST]
```

*For more information about the tokenizer please refer to [mistral-common](https://github.com/mistralai/mistral-common)*

## Ministral 8B Architecture

| Feature               | Value                |
|:---------------------:|:--------------------:|
| **Architecture**      | Dense Transformer    |
| **Parameters**        | 8,019,808,256        |
| **Layers**            | 36                   |
| **Heads**             | 32                   |
| **Dim**               | 4096                 |
| **KV Heads (GQA)**    | 8                    |
| **Hidden Dim**        | 12288                |
| **Head Dim**          | 128                  |
| **Vocab Size**        | 131,072              |
| **Context Length**    | 128k                 |
| **Attention Pattern** | Ragged (128k,32k,32k,32k) |

## Benchmarks

#### Base Models

<u>Knowledge & Commonsense</u>

| Model       | MMLU | AGIEval | Winogrande | Arc-c | TriviaQA |
|:-------------:|:------:|:---------:|:------------:|:-------:|:----------:|
| Mistral 7B Base  | 62.5 | 42.5    | 74.2   | 67.9  | 62.5 |
| Llama 3.1 8B Base | 64.7 | 44.4    | 74.6       | 46.0  | 60.2     |
| ***Ministral 8B Base*** | ***<u>65.0</u>*** | ***<u>48.3</u>*** | ***<u>75.3</u>***   | ***<u>71.9</u>*** | ***<u>65.5</u>*** |
|  |  |     |        |   |      |
| Gemma 2 2B Base | 52.4 | 33.8    | 68.7   | 42.6  | 47.8     |
| Llama 3.2 3B Base | 56.2 | 37.4    | 59.6       | 43.1  | 50.7     |
| ***Ministral 3B Base*** | ***<u>60.9</u>*** | ***<u>42.1</u>***    | ***<u>72.7</u>***       | ***<u>64.2</u>*** | ***<u>56.7</u>***     |

<u>Code & Math</u>

| Model       | HumanEval pass@1 |GSM8K maj@8 |
|:-------------:|:-------------------:|:---------------:|
| Mistral 7B Base  | 26.8              | 32.0           |
| Llama 3.1 8B Base | ***<u>37.8</u>***          | 42.2           |
| ***Ministral 8B Base***  | 34.8              | ***<u>64.5</u>***       |
|   |               |            |
| Gemma 2 2B  | 20.1              | 35.5           |
| Llama 3.2 3B | 14.6              | 33.5           |
| ***Ministral 3B*** | ***<u>34.2</u>***          | ***<u>50.9</u>***       |

<u>Multilingual</u>

| Model       | French MMLU | German MMLU | Spanish MMLU |
|:-------------:|:-------------:|:-------------:|:-------------:|
| Mistral 7B Base  | 50.6         | 49.6         | 51.4         |
| Llama 3.1 8B Base | 50.8         | 52.8         | 54.6         |
| ***Ministral 8B Base*** | ***<u>57.5</u>***     | ***<u>57.4</u>***     | ***<u>59.6</u>***     |
|   |          |          |          |
| Gemma 2 2B Base  | 41.0         | 40.1         | 41.7         |
| Llama 3.2 3B Base | 42.3         | 42.2         | 43.1         |
| ***Ministral 3B Base*** | ***<u>49.1</u>***     | ***<u>48.3</u>***     | ***<u>49.5</u>***     |

### Instruct Models

<u>Chat/Arena (gpt-4o judge)</u>

| Model       | MTBench | Arena Hard | Wild bench |
|:-------------:|:---------:|:------------:|:------------:|
| Mistral 7B Instruct v0.3  | 6.7     | 44.3       | 33.1       |
| Llama 3.1 8B Instruct | 7.5     | 62.4       | 37.0       |
| Gemma 2 9B Instruct | 7.6     | 68.7       | ***<u>43.8</u>***       |
| ***Ministral 8B Instruct*** | ***<u>8.3</u>*** | ***<u>70.9</u>***   | 41.3   |
|   |      |        |        |
| Gemma 2 2B Instruct  | 7.5     | 51.7       | 32.5       |
| Llama 3.2 3B Instruct | 7.2     | 46.0       | 27.2       |
| ***Ministral 3B Instruct*** | ***<u>8.1</u>*** | ***<u>64.3</u>***   | ***<u>36.3</u>***   |

<u>Code & Math</u>

| Model       | MBPP pass@1 | HumanEval pass@1 | Math maj@1 |
|:-------------:|:-------------:|:------------------:|:-------------:|
| Mistral 7B Instruct v0.3  | 50.2        | 38.4             | 13.2        |
| Gemma 2 9B Instruct | 68.5   | 67.7             | 47.4        |
 Llama 3.1 8B Instruct | 69.7   | 67.1             | 49.3        |
| ***Ministral 8B Instruct*** | ***<u>70.0</u>***        | ***<u>76.8</u>***         | ***<u>54.5</u>***   |
|   |         |              |         |
| Gemma 2 2B Instruct  | 54.5        | 42.7             | 22.8        |
| Llama 3.2 3B Instruct | 64.6        | 61.0             | 38.4        |
| ***Ministral 3B* Instruct** | ***<u>67.7</u>***   | ***<u>77.4</u>***         | ***<u>51.7</u>***   |

<u>Function calling</u>

| Model       | Internal bench |
|:-------------:|:-----------------:|
| Mistral 7B Instruct v0.3  | 6.9             |
| Llama 3.1 8B Instruct | N/A             |
| Gemma 2 9B Instruct | N/A             |
| ***Ministral 8B Instruct*** | ***<u>31.6</u>***       |
|   |              |
| Gemma 2 2B Instruct  | N/A             |
| Llama 3.2 3B Instruct | N/A             |
| ***Ministral 3B Instruct*** | ***<u>28.4</u>***       |

## Usage Examples

### vLLM (recommended)

We recommend using this model with the [vLLM library](https://github.com/vllm-project/vllm)
to implement production-ready inference pipelines.

> [!IMPORTANT]
> Currently vLLM is capped at 32k context size because interleaved attention kernels for paged attention are not yet implemented in vLLM.
> Attention kernels for paged attention are being worked on and as soon as it is fully supported in vLLM, this model card will be updated.
> To take advantage of the full 128k context size we recommend [Mistral Inference](https://huggingface.co/mistralai/Ministral-8B-Instruct-2410#mistral-inference)

**_Installation_**


Make sure you install `vLLM >= v0.6.2`:

```
pip install --upgrade vllm
```

Also make sure you have `mistral_common >= 1.4.4` installed:

```
pip install --upgrade mistral_common
```

You can also make use of a ready-to-go [docker image](https://github.com/vllm-project/vllm/blob/main/Dockerfile).

**_Offline_**

```py
from vllm import LLM
from vllm.sampling_params import SamplingParams

model_name = "mistralai/Ministral-8B-Instruct-2410"

sampling_params = SamplingParams(max_tokens=8192)

# note that running Ministral 8B on a single GPU requires 24 GB of GPU RAM
# If you want to divide the GPU requirement over multiple devices, please add *e.g.* `tensor_parallel=2`
llm = LLM(model=model_name, tokenizer_mode="mistral", config_format="mistral", load_format="mistral")

prompt = "Do we need to think for 10 seconds to find the answer of 1 + 1?"

messages = [
    {
        "role": "user",
        "content": prompt
    },
]

outputs = llm.chat(messages, sampling_params=sampling_params)

print(outputs[0].outputs[0].text)
# You don't need to think for 10 seconds to find the answer to 1 + 1. The answer is 2,
# and you can easily add these two numbers in your mind very quickly without any delay.
```

**_Server_**

You can also use Ministral-8B in a server/client setting. 

1. Spin up a server:


```
vllm serve mistralai/Ministral-8B-Instruct-2410 --tokenizer_mode mistral --config_format mistral --load_format mistral
```

**Note:** Running Ministral-8B on a single GPU requires 24 GB of GPU RAM. 

If you want to divide the GPU requirement over multiple devices, please add *e.g.* `--tensor_parallel=2`

2. And ping the client:

```
curl --location 'http://<your-node-url>:8000/v1/chat/completions' \
--header 'Content-Type: application/json' \
--header 'Authorization: Bearer token' \
--data '{
    "model": "mistralai/Ministral-8B-Instruct-2410",
    "messages": [
      {
        "role": "user",
        "content": "Do we need to think for 10 seconds to find the answer of 1 + 1?"
      }
    ]
}'

```

### Mistral-inference

We recommend using [mistral-inference](https://github.com/mistralai/mistral-inference) to quickly try out / "vibe-check" the model.


**_Install_**

Make sure to have `mistral_inference >= 1.5.0` installed.

```
pip install mistral_inference --upgrade
```

**_Download_**

```py
from huggingface_hub import snapshot_download
from pathlib import Path

mistral_models_path = Path.home().joinpath('mistral_models', '8B-Instruct')
mistral_models_path.mkdir(parents=True, exist_ok=True)

snapshot_download(repo_id="mistralai/Ministral-8B-Instruct-2410", allow_patterns=["params.json", "consolidated.safetensors", "tekken.json"], local_dir=mistral_models_path)
```

### Chat

After installing `mistral_inference`, a `mistral-chat` CLI command should be available in your environment. You can chat with the model using

```
mistral-chat $HOME/mistral_models/8B-Instruct --instruct --max_tokens 256
```

### Passkey detection

> [!IMPORTANT]
> In this example the passkey message has over >100k tokens and mistral-inference
> does not have a chunked pre-fill mechanism. Therefore you will need a lot of
> GPU memory in order to run the below example (80 GB). For a more memory-efficient
> solution we recommend using vLLM.

```py
from mistral_inference.transformer import Transformer
from pathlib import Path
import json
from mistral_inference.generate import generate
from huggingface_hub import hf_hub_download

from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
from mistral_common.protocol.instruct.messages import UserMessage
from mistral_common.protocol.instruct.request import ChatCompletionRequest

def load_passkey_request() -> ChatCompletionRequest:
    passkey_file = hf_hub_download(repo_id="mistralai/Ministral-8B-Instruct-2410", filename="passkey_example.json")

    with open(passkey_file, "r") as f:
        data = json.load(f)

    message_content = data["messages"][0]["content"]
    return ChatCompletionRequest(messages=[UserMessage(content=message_content)])

tokenizer = MistralTokenizer.from_file(f"{mistral_models_path}/tekken.json")
model = Transformer.from_folder(mistral_models_path, softmax_fp32=False)

completion_request = load_passkey_request()

tokens = tokenizer.encode_chat_completion(completion_request).tokens

out_tokens, _ = generate([tokens], model, max_tokens=64, temperature=0.0, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id)
result = tokenizer.instruct_tokenizer.tokenizer.decode(out_tokens[0])

print(result)  # The pass key is 13005.
```


### Instruct following

```py
from mistral_inference.transformer import Transformer
from mistral_inference.generate import generate

from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
from mistral_common.protocol.instruct.messages import UserMessage
from mistral_common.protocol.instruct.request import ChatCompletionRequest


tokenizer = MistralTokenizer.from_file(f"{mistral_models_path}/tekken.json")
model = Transformer.from_folder(mistral_models_path)

completion_request = ChatCompletionRequest(messages=[UserMessage(content="How often does the letter r occur in Mistral?")])

tokens = tokenizer.encode_chat_completion(completion_request).tokens

out_tokens, _ = generate([tokens], model, max_tokens=64, temperature=0.0, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id)
result = tokenizer.instruct_tokenizer.tokenizer.decode(out_tokens[0])

print(result)
```

### Function calling

```py
from mistral_common.protocol.instruct.tool_calls import Function, Tool
from mistral_inference.transformer import Transformer
from mistral_inference.generate import generate

from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
from mistral_common.protocol.instruct.messages import UserMessage
from mistral_common.protocol.instruct.request import ChatCompletionRequest
from mistral_common.tokens.tokenizers.tekken import SpecialTokenPolicy


tokenizer = MistralTokenizer.from_file(f"{mistral_models_path}/tekken.json")
tekken = tokenizer.instruct_tokenizer.tokenizer
tekken.special_token_policy = SpecialTokenPolicy.IGNORE

model = Transformer.from_folder(mistral_models_path)

completion_request = ChatCompletionRequest(
    tools=[
        Tool(
            function=Function(
                name="get_current_weather",
                description="Get the current weather",
                parameters={
                    "type": "object",
                    "properties": {
                        "location": {
                            "type": "string",
                            "description": "The city and state, e.g. San Francisco, CA",
                        },
                        "format": {
                            "type": "string",
                            "enum": ["celsius", "fahrenheit"],
                            "description": "The temperature unit to use. Infer this from the users location.",
                        },
                    },
                    "required": ["location", "format"],
                },
            )
        )
    ],
    messages=[
        UserMessage(content="What's the weather like today in Paris?"),
        ],
)

tokens = tokenizer.encode_chat_completion(completion_request).tokens

out_tokens, _ = generate([tokens], model, max_tokens=64, temperature=0.0, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id)
result = tokenizer.instruct_tokenizer.tokenizer.decode(out_tokens[0])

print(result)
```

## The Mistral AI Team

Albert Jiang, Alexandre Abou Chahine, Alexandre Sablayrolles, Alexis Tacnet, Alodie Boissonnet, Alok Kothari, Amélie Héliou, Andy Lo, Anna Peronnin, Antoine Meunier, Antoine Roux, Antonin Faure, Aritra Paul, Arthur Darcet, Arthur Mensch, Audrey Herblin-Stoop, Augustin Garreau, Austin Birky, Avinash Sooriyarachchi, Baptiste Rozière, Barry Conklin, Bastien Bouillon, Blanche Savary de Beauregard, Carole Rambaud, Caroline Feldman, Charles de Freminville, Charline Mauro, Chih-Kuan Yeh, Chris Bamford, Clement Auguy, Corentin Heintz, Cyriaque Dubois, Devendra Singh Chaplot, Diego Las Casas, Diogo Costa, Eléonore Arcelin, Emma Bou Hanna, Etienne Metzger, Fanny Olivier Autran, Francois Lesage, Garance Gourdel, Gaspard Blanchet, Gaspard Donada Vidal, Gianna Maria Lengyel, Guillaume Bour, Guillaume Lample, Gustave Denis, Harizo Rajaona, Himanshu Jaju, Ian Mack, Ian Mathew, Jean-Malo Delignon, Jeremy Facchetti, Jessica Chudnovsky, Joachim Studnia, Justus Murke, Kartik Khandelwal, Kenneth Chiu, Kevin Riera, Leonard Blier, Leonard Suslian, Leonardo Deschaseaux, Louis Martin, Louis Ternon, Lucile Saulnier, Lélio Renard Lavaud, Sophia Yang, Margaret Jennings, Marie Pellat, Marie Torelli, Marjorie Janiewicz, Mathis Felardos, Maxime Darrin, Michael Hoff, Mickaël Seznec, Misha Jessel Kenyon, Nayef Derwiche, Nicolas Carmont Zaragoza, Nicolas Faurie, Nicolas Moreau, Nicolas Schuhl, Nikhil Raghuraman, Niklas Muhs, Olivier de Garrigues, Patricia Rozé, Patricia Wang, Patrick von Platen, Paul Jacob, Pauline Buche, Pavankumar Reddy Muddireddy, Perry Savas, Pierre Stock, Pravesh Agrawal, Renaud de Peretti, Romain Sauvestre, Romain Sinthe, Roman Soletskyi, Sagar Vaze, Sandeep Subramanian, Saurabh Garg, Soham Ghosh, Sylvain Regnier, Szymon Antoniak, Teven Le Scao, Theophile Gervet, Thibault Schueller, Thibaut Lavril, Thomas Wang, Timothée Lacroix, Valeriia Nemychnikova, Wendy Shang, William El Sayed, William Marshall