File size: 2,722 Bytes
b1a3f09
 
 
 
 
 
fae06b8
 
b1a3f09
 
 
 
fae06b8
 
 
 
 
 
 
 
 
 
 
b1a3f09
 
 
 
 
 
 
fae06b8
b1a3f09
fae06b8
 
b1a3f09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
---
library_name: transformers
license: apache-2.0
base_model: openai/whisper-medium
tags:
- generated_from_trainer
datasets:
- swagen
metrics:
- wer
model-index:
- name: whisper-medium-swagen-combined-15hrs-model
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: swagen
      type: swagen
    metrics:
    - name: Wer
      type: wer
      value: 0.27171266233766234
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# whisper-medium-swagen-combined-15hrs-model

This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the swagen dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4103
- Wer: 0.2717

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer    |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 2.6268        | 0.1654 | 200  | 0.8031          | 0.4605 |
| 2.0712        | 0.3308 | 400  | 0.6148          | 0.3829 |
| 1.7302        | 0.4962 | 600  | 0.5562          | 0.3490 |
| 1.5735        | 0.6616 | 800  | 0.5103          | 0.3106 |
| 1.5623        | 0.8270 | 1000 | 0.4683          | 0.2776 |
| 1.2713        | 0.9924 | 1200 | 0.4439          | 0.2688 |
| 0.7209        | 1.1571 | 1400 | 0.4601          | 0.2732 |
| 0.6856        | 1.3225 | 1600 | 0.4391          | 0.2595 |
| 0.7661        | 1.4879 | 1800 | 0.4396          | 0.2755 |
| 0.8113        | 1.6533 | 2000 | 0.4262          | 0.2643 |
| 0.77          | 1.8187 | 2200 | 0.4175          | 0.2679 |
| 0.6942        | 1.9841 | 2400 | 0.4103          | 0.2717 |
| 0.2814        | 2.1489 | 2600 | 0.4295          | 0.2617 |
| 0.3171        | 2.3142 | 2800 | 0.4301          | 0.2432 |
| 0.3495        | 2.4796 | 3000 | 0.4299          | 0.2526 |


### Framework versions

- Transformers 4.47.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0