File size: 4,091 Bytes
7b056bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
---
tags:
- summarization
datasets:
- csebuetnlp/xlsum
languages:
- am
- ar
- az
- bn
- my
- zh
- en
- fr
- gu
- ha
- hi
- ig
- id
- ja
- rn
- ko
- ky
- mr
- ne
- om
- ps
- fa
- pcm
- pt
- pa
- ru
- gd
- sr
- si
- so
- es
- sw
- ta
- te
- th
- ti
- tr
- uk
- ur
- uz
- vi
- cy
- yo
licenses:
- cc-by-nc-sa-4.0
multilinguality:
- multilingual
paperswithcode_id: xl-sum
---

# mT5-multilingual-XLSum

This repository contains the mT5 checkpoint finetuned on the 45 languages of [XL-Sum](https://huggingface.co/datasets/csebuetnlp/xlsum) dataset. For finetuning details and scripts,
see the [paper](https://aclanthology.org/2021.findings-acl.413/) and the [official repository](https://github.com/csebuetnlp/xl-sum). 


## Using this model in `transformers` (tested on 4.11.0.dev0)

```python
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM

article_text = """Input article text"""

model_name = "csebuetnlp/mT5_multilingual_XLSum"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)

input_ids = tokenizer.prepare_seq2seq_batch(
    [article_text.strip()],
    return_tensors="pt",
    padding="max_length",
    truncation=True,
    max_length=512
)["input_ids"]

output_ids = model.generate(
    input_ids=input_ids,
    max_length=84,
    no_repeat_ngram_size=2,
    num_beams=4
)[0]

summary = tokenizer.decode(
    output_ids,
    skip_special_tokens=True,
    clean_up_tokenization_spaces=False
)
print(summary)
```

## Benchmarks

Scores on test sets are given below. 

Language | ROUGE-1 / ROUGE-2 / ROUGE-L
---------|----------------------------
Amharic | 20.0485 / 7.4111 / 18.0753
Arabic | 34.9107 / 14.7937 / 29.1623
Azerbaijani | 21.4227 / 9.5214 / 19.3331
Bengali | 29.5653 / 12.1095 / 25.1315
Burmese | 15.9626 / 5.1477 / 14.1819
Chinese (Simplified) | 39.4071 / 17.7913 / 33.406
Chinese (Traditional) | 37.1866 / 17.1432 / 31.6184
English | 37.601 / 15.1536 / 29.8817
French | 35.3398 / 16.1739 / 28.2041
Gujarati | 21.9619 / 7.7417 / 19.86
Hausa | 39.4375 / 17.6786 / 31.6667
Hindi | 38.5882 / 16.8802 / 32.0132
Igbo | 31.6148 / 10.1605 / 24.5309
Indonesian | 37.0049 / 17.0181 / 30.7561
Japanese | 48.1544 / 23.8482 / 37.3636
Kirundi | 31.9907 / 14.3685 / 25.8305
Korean | 23.6745 / 11.4478 / 22.3619
Kyrgyz | 18.3751 / 7.9608 / 16.5033
Marathi | 22.0141 / 9.5439 / 19.9208
Nepali | 26.6547 / 10.2479 / 24.2847
Oromo | 18.7025 / 6.1694 / 16.1862
Pashto | 38.4743 / 15.5475 / 31.9065
Persian | 36.9425 / 16.1934 / 30.0701
Pidgin | 37.9574 / 15.1234 / 29.872
Portuguese | 37.1676 / 15.9022 / 28.5586
Punjabi | 30.6973 / 12.2058 / 25.515
Russian | 32.2164 / 13.6386 / 26.1689
Scottish Gaelic | 29.0231 / 10.9893 / 22.8814
Serbian (Cyrillic) | 23.7841 / 7.9816 / 20.1379
Serbian (Latin) | 21.6443 / 6.6573 / 18.2336
Sinhala | 27.2901 / 13.3815 / 23.4699
Somali | 31.5563 / 11.5818 / 24.2232
Spanish | 31.5071 / 11.8767 / 24.0746
Swahili | 37.6673 / 17.8534 / 30.9146
Tamil | 24.3326 / 11.0553 / 22.0741
Telugu | 19.8571 / 7.0337 / 17.6101
Thai | 37.3951 / 17.275 / 28.8796
Tigrinya | 25.321 / 8.0157 / 21.1729
Turkish | 32.9304 / 15.5709 / 29.2622
Ukrainian | 23.9908 / 10.1431 / 20.9199
Urdu | 39.5579 / 18.3733 / 32.8442
Uzbek | 16.8281 / 6.3406 / 15.4055
Vietnamese | 32.8826 / 16.2247 / 26.0844
Welsh | 32.6599 / 11.596 / 26.1164
Yoruba | 31.6595 / 11.6599 / 25.0898



## Citation

If you use this model, please cite the following paper:
```
@inproceedings{hasan-etal-2021-xl,
    title = "{XL}-Sum: Large-Scale Multilingual Abstractive Summarization for 44 Languages",
    author = "Hasan, Tahmid  and
      Bhattacharjee, Abhik  and
      Islam, Md. Saiful  and
      Mubasshir, Kazi  and
      Li, Yuan-Fang  and
      Kang, Yong-Bin  and
      Rahman, M. Sohel  and
      Shahriyar, Rifat",
    booktitle = "Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021",
    month = aug,
    year = "2021",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.findings-acl.413",
    pages = "4693--4703",
}
```