File size: 20,835 Bytes
2d8da09 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 |
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Example Run Command: python make_supdata.py --ssl_model_ckpt_path <PATH TO CKPT> --manifest_path <PATH TO MANIFEST>
import argparse
import json
import os
import time
from multiprocessing import Pool
from pathlib import Path
import hydra.utils
import librosa
import numpy as np
import torch
from omegaconf import open_dict
from tqdm import tqdm
from nemo.collections.asr.parts.preprocessing.segment import AudioSegment
from nemo.collections.tts.models import ssl_tts
from nemo.collections.tts.parts.utils.tts_dataset_utils import get_base_dir
from nemo.core.classes import Dataset
from nemo.utils import logging
class AudioDataset(Dataset):
def __init__(
self,
manifest_paths,
min_duration=0.5,
max_duration=16.0,
pad_multiple=1024,
sample_rate=22050,
sup_data_dir=None,
):
self.data = []
for manifest_path in manifest_paths:
with open(manifest_path, "r") as f:
for line in f:
record = json.loads(line)
if record['duration'] < min_duration or record['duration'] > max_duration:
continue
self.data.append(json.loads(line))
self.base_data_dir = get_base_dir([item["audio_filepath"] for item in self.data])
if sup_data_dir is not None:
self.sup_data_dir = sup_data_dir
else:
self.sup_data_dir = os.path.join(self.base_data_dir, "sup_data")
if not os.path.exists(self.sup_data_dir):
os.makedirs(self.sup_data_dir)
self.pad_multiple = pad_multiple
self.sample_rate = sample_rate
def __len__(self):
return len(self.data)
def _get_wav_from_filepath(self, audio_filepath):
features = AudioSegment.segment_from_file(
audio_filepath, target_sr=self.sample_rate, n_segments=-1, trim=False,
)
audio_samples = features.samples
audio, audio_length = torch.tensor(audio_samples), torch.tensor(audio_samples.shape[0]).long()
# pad audio to a multiple of self.pad_multiple
if audio.shape[0] % self.pad_multiple != 0:
audio = torch.cat(
[audio, torch.zeros(self.pad_multiple - audio.shape[0] % self.pad_multiple, dtype=torch.float)]
)
audio_length = torch.tensor(audio.shape[0]).long()
return audio, audio_length
def pad_collate_fn(self, batch):
final_batch = {}
for row in batch:
for key in row:
if key not in final_batch:
final_batch[key] = []
final_batch[key].append(row[key])
max_audio_len = max([_audio_len.item() for _audio_len in final_batch["audio_len"]])
audios_padded = []
for audio in final_batch["audio"]:
audio_padded = torch.nn.functional.pad(audio, (0, max_audio_len - audio.size(0)), value=0)
audios_padded.append(audio_padded)
final_batch["audio"] = audios_padded
for key in final_batch:
if key not in ["rel_audio_path_as_text_id", "wav_path"]:
final_batch[key] = torch.stack(final_batch[key])
return final_batch
def __getitem__(self, index):
sample = self.data[index]
rel_audio_path = Path(sample["audio_filepath"]).relative_to(self.base_data_dir).with_suffix("")
rel_audio_path_as_text_id = str(rel_audio_path).replace("/", "_")
speaker = torch.tensor(sample["speaker"]).long()
audio, audio_length = self._get_wav_from_filepath(sample["audio_filepath"])
return {
"audio": audio,
"audio_len": audio_length,
"rel_audio_path_as_text_id": rel_audio_path_as_text_id,
"wav_path": sample["audio_filepath"],
"speaker": speaker,
}
def segment_wav(wav, segment_length, segment_hop_size, min_segment_length):
if len(wav) < segment_length:
pad = torch.zeros(segment_length - len(wav))
segment = torch.cat([wav, pad])
return [segment]
else:
si = 0
segments = []
while si < len(wav) - min_segment_length:
segment = wav[si : si + segment_length]
if len(segment) < segment_length:
pad = torch.zeros(segment_length - len(segment))
segment = torch.cat([segment, pad])
segments.append(segment)
si += segment_hop_size
return segments
def segment_batch(batch, segment_length=44100, segment_hop_size=22050, min_segment_length=22050):
all_segments = []
segment_indices = []
si = 0
for bidx in range(len(batch['audio'])):
audio = batch['audio'][bidx]
audio_length = batch['audio_len'][bidx]
audio_actual = audio[:audio_length]
audio_segments = segment_wav(audio_actual, segment_length, segment_hop_size, min_segment_length)
all_segments += audio_segments
segment_indices.append((si, si + len(audio_segments) - 1))
si += len(audio_segments)
return torch.stack(all_segments), segment_indices
def get_mel_spectrogram(fb, wav, stft_params):
EPSILON = 1e-9
window_fn = torch.hann_window
spec = torch.stft(
input=wav,
n_fft=stft_params['n_fft'], # 1024
hop_length=stft_params['hop_length'], # 256
win_length=stft_params['win_length'], # 1024
window=window_fn(stft_params['win_length'], periodic=False).to(torch.float).to('cuda') if window_fn else None,
return_complex=True,
center=True,
)
if spec.dtype in [torch.cfloat, torch.cdouble]:
spec = torch.view_as_real(spec)
spec = torch.sqrt(spec.pow(2).sum(-1) + EPSILON)
mel = torch.matmul(fb.to(spec.dtype), spec)
log_mel = torch.log(torch.clamp(mel, min=torch.finfo(mel.dtype).tiny))
return log_mel
def load_wav(wav_path, sample_rate=22050, pad_multiple=1024):
wav = AudioSegment.segment_from_file(wav_path, target_sr=sample_rate, n_segments=-1, trim=False,).samples
if wav.shape[0] % pad_multiple != 0:
wav = np.concatenate([wav, np.zeros(pad_multiple - wav.shape[0] % pad_multiple)])
wav = wav[:-1]
return wav
def save_pitch_contour(record):
wav_path = record['wav_path']
wav_text_id = record['wav_id']
sup_data_dir = record['sup_data_dir']
stft_params = record['stft_params']
wav = load_wav(wav_path, stft_params['sample_rate'], stft_params['pad_multiple'])
pitch_contour_fn = f"pitch_contour_{wav_text_id}.pt"
pitch_contour_fp = os.path.join(sup_data_dir, pitch_contour_fn)
f0, _, _ = librosa.pyin(
wav,
fmin=librosa.note_to_hz('C2'),
fmax=stft_params['yin_fmax'],
frame_length=stft_params['win_length'],
hop_length=stft_params['hop_length'],
sr=stft_params['sample_rate'],
center=True,
fill_na=0.0,
)
pitch_contour = torch.tensor(f0, dtype=torch.float32)
torch.save(pitch_contour, pitch_contour_fp)
logging.info("saved {}".format(pitch_contour_fp))
return pitch_contour
def compute_pitch_stats(records):
def _is_valid_pitch(pitch_mean, pitch_std):
c1 = pitch_mean > 0 and pitch_mean < 1000
c2 = pitch_std > 0 and pitch_std < 1000
return c1 and c2
speaker_wise_pitch_contours = {}
for item in records:
wav_id = item['wav_id']
speaker = item['speaker']
sup_data_dir = item['sup_data_dir']
pitch_contour_fn = f"pitch_contour_{wav_id}.pt"
pitch_contour_fp = os.path.join(sup_data_dir, pitch_contour_fn)
if speaker not in speaker_wise_pitch_contours:
speaker_wise_pitch_contours[speaker] = []
speaker_wise_pitch_contours[speaker].append(pitch_contour_fp)
speaker_pitch_stats = {}
for speaker in speaker_wise_pitch_contours:
non_zero_pc = []
for pitch_contour_fp in speaker_wise_pitch_contours[speaker][:50]:
pitch_contour = torch.load(pitch_contour_fp)
pitch_contour_nonzero = pitch_contour[pitch_contour != 0]
if len(pitch_contour_nonzero) > 0:
non_zero_pc.append(pitch_contour_nonzero)
if len(non_zero_pc) > 0:
non_zero_pc = torch.cat(non_zero_pc)
pitch_mean = non_zero_pc.mean().item()
pitch_std = non_zero_pc.std().item()
valid = True
if not _is_valid_pitch(pitch_mean, pitch_std):
logging.warning("invalid pitch: {}".format(speaker))
pitch_mean = 212.0
pitch_std = 70.0
valid = "False"
else:
logging.warning("could not find pitch contour for speaker {}".format(speaker))
valid = "False"
pitch_mean = 212.0
pitch_std = 70.0
speaker_pitch_stats[speaker] = {"pitch_mean": pitch_mean, "pitch_std": pitch_std, "valid": valid}
with open(os.path.join(sup_data_dir, "speaker_pitch_stats.json"), "w") as f:
json.dump(speaker_pitch_stats, f)
def main():
parser = argparse.ArgumentParser(description='Evaluate the model')
parser.add_argument(
'--ssl_model_ckpt_path', type=str, required=True,
)
parser.add_argument('--manifest_paths', type=str, required=True)
parser.add_argument('--sup_data_dir', type=str, default=None)
parser.add_argument('--batch_size', type=int, default=32)
parser.add_argument('--ssl_content_emb_type', type=str, default="embedding_and_probs")
parser.add_argument('--use_unique_tokens', type=int, default=1)
parser.add_argument('--num_workers', type=int, default=8)
parser.add_argument('--pool_workers', type=int, default=30)
parser.add_argument('--compute_pitch_contours', type=int, default=1)
parser.add_argument('--num_pitch_per_speaker', type=int, default=None) # saves time.
parser.add_argument('--sample_rate', type=int, default=22050)
parser.add_argument('--pad_multiple', type=int, default=1024)
parser.add_argument('--ssl_downsampling_factor', type=int, default=4)
parser.add_argument('--stft_n_fft', type=int, default=1024)
parser.add_argument('--stft_hop_length', type=int, default=256)
parser.add_argument('--stft_win_length', type=int, default=1024)
parser.add_argument('--stft_n_mel', type=int, default=80)
parser.add_argument('--stft_fmin', type=int, default=0)
parser.add_argument('--stft_fmax', type=int, default=8000)
parser.add_argument('--yin_fmax', type=int, default=500)
parser.add_argument('--segment_length', type=int, default=44100)
parser.add_argument('--segment_hop_size', type=int, default=22050)
parser.add_argument('--min_segment_length', type=int, default=22050)
args = parser.parse_args()
device = "cuda:0" if torch.cuda.is_available() else "cpu"
manifest_paths = args.manifest_paths.split(",")
ssl_model_ckpt_path = args.ssl_model_ckpt_path
dataset = AudioDataset(
manifest_paths, pad_multiple=args.pad_multiple, sample_rate=args.sample_rate, sup_data_dir=args.sup_data_dir
)
dataloader = torch.utils.data.DataLoader(
dataset,
batch_size=args.batch_size,
shuffle=False,
collate_fn=dataset.pad_collate_fn,
num_workers=args.num_workers,
)
ssl_model = ssl_tts.SSLDisentangler.load_from_checkpoint(ssl_model_ckpt_path, strict=False)
with open_dict(ssl_model.cfg):
ssl_model.cfg.preprocessor.exact_pad = True
ssl_model.preprocessor = hydra.utils.instantiate(ssl_model.cfg.preprocessor)
ssl_model.preprocessor_disentangler = ssl_model.preprocessor
ssl_model.eval()
ssl_model.to(device)
sample_rate = args.sample_rate
stft_params = {
"n_fft": args.stft_n_fft,
"hop_length": args.stft_hop_length,
"win_length": args.stft_win_length,
"n_mel": args.stft_n_mel,
"sample_rate": sample_rate,
"pad_multiple": args.pad_multiple,
"fmin": args.stft_fmin,
"fmax": args.stft_fmax,
"yin_fmax": args.yin_fmax,
}
fb = (
torch.tensor(
librosa.filters.mel(
sr=sample_rate,
n_fft=stft_params['n_fft'],
n_mels=stft_params['n_mel'],
fmin=stft_params['fmin'],
fmax=stft_params['fmax'],
),
dtype=torch.float,
)
.unsqueeze(0)
.to(device)
)
st = time.time()
bidx = 0
wav_and_id_list = []
for batch in tqdm(dataloader):
bidx += 1
with torch.no_grad():
(
_,
_,
batch_content_embedding,
batch_content_log_probs,
batch_encoded_len,
) = ssl_model.forward_for_export(
input_signal=batch['audio'].to(device),
input_signal_length=batch['audio_len'].to(device),
normalize_content=True,
)
batch_mel_specs = get_mel_spectrogram(fb, batch['audio'][:, :-1].to(device), stft_params)
audio_segmented, segment_indices = segment_batch(
batch, args.segment_length, args.segment_hop_size, args.min_segment_length
)
audio_seg_len = torch.tensor([len(segment) for segment in audio_segmented]).to(device).long()
_, batch_speaker_embeddings, _, _, _ = ssl_model.forward_for_export(
input_signal=audio_segmented.to(device), input_signal_length=audio_seg_len, normalize_content=True,
)
for idx in range(batch['audio'].shape[0]):
_speaker = batch['speaker'][idx].item()
wav_path = batch['wav_path'][idx]
wav_id = batch['rel_audio_path_as_text_id'][idx]
wav_and_id_list.append((wav_path, wav_id, _speaker))
content_embedding = batch_content_embedding[idx].detach()
content_log_probs = batch_content_log_probs[:, idx, :].detach() # (content lob prob is (t, b, c))
encoded_len = batch_encoded_len[idx].detach()
content_embedding = content_embedding[: encoded_len.item()]
content_embedding = content_embedding.t()
content_log_probs = content_log_probs[: encoded_len.item()]
content_log_probs = content_log_probs.t()
content_probs = torch.exp(content_log_probs)
duration = torch.ones(content_embedding.shape[1]) * args.ssl_downsampling_factor
bsi_start = segment_indices[idx][0]
bsi_end = segment_indices[idx][1]
speaker_embedding = torch.mean(batch_speaker_embeddings[bsi_start : bsi_end + 1], dim=0)
l2_norm = torch.norm(speaker_embedding, p=2)
speaker_embedding = speaker_embedding / l2_norm
if args.ssl_content_emb_type == "probs":
# content embedding is only character probabilities
final_content_embedding = content_probs
elif args.ssl_content_emb_type == "embedding":
# content embedding is only output of content head of SSL backbone
final_content_embedding = content_embedding
elif args.ssl_content_emb_type == "log_probs":
# content embedding is only log of character probabilities
final_content_embedding = content_log_probs
elif args.ssl_content_emb_type == "embedding_and_probs":
# content embedding is the concatenation of character probabilities and output of content head of SSL backbone
final_content_embedding = torch.cat([content_embedding, content_probs], dim=0)
if args.use_unique_tokens == 1:
# group content embeddings with same predicted token (by averaging) and add the durations of the grouped embeddings
# Eg. By default each content embedding corresponds to 4 frames of spectrogram (ssl_downsampling_factor)
# If we group 3 content embeddings, the duration of the grouped embedding will be 12 frames.
# This is useful for adapting the duration during inference based on the speaker.
token_predictions = torch.argmax(content_probs, dim=0)
content_buffer = [final_content_embedding[:, 0]]
unique_content_embeddings = []
unique_tokens = []
durations = []
for _t in range(1, final_content_embedding.shape[1]):
if token_predictions[_t] == token_predictions[_t - 1]:
content_buffer.append(final_content_embedding[:, _t])
else:
durations.append(len(content_buffer) * args.ssl_downsampling_factor)
unique_content_embeddings.append(torch.mean(torch.stack(content_buffer), dim=0))
content_buffer = [final_content_embedding[:, _t]]
unique_tokens.append(token_predictions[_t].item())
if len(content_buffer) > 0:
durations.append(len(content_buffer) * args.ssl_downsampling_factor)
unique_content_embeddings.append(torch.mean(torch.stack(content_buffer), dim=0))
unique_tokens.append(token_predictions[_t].item())
unique_content_embedding = torch.stack(unique_content_embeddings)
final_content_embedding = unique_content_embedding.t()
duration = torch.tensor(durations).float()
mel_len = int(batch['audio_len'][idx].item() / stft_params['hop_length'])
item_mel = batch_mel_specs[idx][:, :mel_len]
wav_text_id = batch["rel_audio_path_as_text_id"][idx]
content_emb_fn = f"{args.ssl_content_emb_type}_content_embedding_{wav_text_id}.pt"
speaker_emb_fn = f"speaker_embedding_{wav_text_id}.pt"
duration_fn = f"duration_embedding_{wav_text_id}.pt" # embedding just for namesake
content_emb_fp = os.path.join(dataset.sup_data_dir, content_emb_fn)
speaker_emb_fp = os.path.join(dataset.sup_data_dir, speaker_emb_fn)
duration_fp = os.path.join(dataset.sup_data_dir, duration_fn)
mel_spec_fn = f"mel_spec_{wav_text_id}.pt"
mel_spec_fp = os.path.join(dataset.sup_data_dir, mel_spec_fn)
torch.save(item_mel.cpu(), mel_spec_fp)
torch.save(final_content_embedding.cpu(), content_emb_fp)
torch.save(speaker_embedding.cpu(), speaker_emb_fp)
torch.save(duration.cpu(), duration_fp)
et = time.time()
logging.info(
"Processed Batch {} of {} | Time per batch: {:.4f} s".format(
bidx + 1, len(dataloader), (et - st) / bidx
)
)
if args.compute_pitch_contours == 1:
speaker_wise_records = {}
for row in wav_and_id_list:
wav_path, wav_id, speaker = row
if speaker not in speaker_wise_records:
speaker_wise_records[speaker] = []
speaker_wise_records[speaker].append(
{
"wav_path": wav_path,
"wav_id": wav_id,
"sup_data_dir": dataset.sup_data_dir,
"stft_params": stft_params,
"speaker": speaker,
}
)
filtered_records = []
for speaker in speaker_wise_records:
if args.num_pitch_per_speaker is not None:
filtered_records += speaker_wise_records[speaker][: args.num_pitch_per_speaker]
else:
filtered_records += speaker_wise_records[speaker]
with Pool(args.pool_workers) as p:
p.map(save_pitch_contour, filtered_records)
compute_pitch_stats(filtered_records)
if __name__ == '__main__':
main()
|