File size: 13,321 Bytes
2d8da09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
# Copyright (c) 2022, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import json
import random
import shutil
import urllib.request
from pathlib import Path

import pandas as pd
from joblib import Parallel, delayed
from tqdm import tqdm

try:
    from nemo_text_processing.text_normalization.normalize import Normalizer
except (ImportError, ModuleNotFoundError):
    raise ModuleNotFoundError(
        "The package `nemo_text_processing` was not installed in this environment. Please refer to"
        " https://github.com/NVIDIA/NeMo-text-processing and install this package before using "
        "this script"
    )

from nemo.utils import logging

# full corpus.
URLS_FULL = {
    "Bernd_Ungerer": "https://opendata.iisys.de/opendata/Datasets/HUI-Audio-Corpus-German/dataset_full/Bernd_Ungerer.zip",
    "Eva_K": "https://opendata.iisys.de/opendata/Datasets/HUI-Audio-Corpus-German/dataset_full/Eva_K.zip",
    "Friedrich": "https://opendata.iisys.de/opendata/Datasets/HUI-Audio-Corpus-German/dataset_full/Friedrich.zip",
    "Hokuspokus": "https://opendata.iisys.de/opendata/Datasets/HUI-Audio-Corpus-German/dataset_full/Hokuspokus.zip",
    "Karlsson": "https://opendata.iisys.de/opendata/Datasets/HUI-Audio-Corpus-German/dataset_full/Karlsson.zip",
    "others": "https://opendata.iisys.de/opendata/Datasets/HUI-Audio-Corpus-German/dataset_full/others.zip",
}
URL_STATS_FULL = "https://opendata.iisys.de/opendata/Datasets/HUI-Audio-Corpus-German/datasetStatistic.zip"

# the clean subset of the full corpus.
URLS_CLEAN = {
    "Bernd_Ungerer": "https://opendata.iisys.de/opendata/Datasets/HUI-Audio-Corpus-German/dataset_clean/Bernd_Ungerer_Clean.zip",
    "Eva_K": "https://opendata.iisys.de/opendata/Datasets/HUI-Audio-Corpus-German/dataset_clean/Eva_K_Clean.zip",
    "Friedrich": "https://opendata.iisys.de/opendata/Datasets/HUI-Audio-Corpus-German/dataset_clean/Friedrich_Clean.zip",
    "Hokuspokus": "https://opendata.iisys.de/opendata/Datasets/HUI-Audio-Corpus-German/dataset_clean/Hokuspokus_Clean.zip",
    "Karlsson": "https://opendata.iisys.de/opendata/Datasets/HUI-Audio-Corpus-German/dataset_clean/Karlsson_Clean.zip",
    "others": "https://opendata.iisys.de/opendata/Datasets/HUI-Audio-Corpus-German/dataset_clean/others_Clean.zip",
}
URL_STATS_CLEAN = "https://opendata.iisys.de/opendata/Datasets/HUI-Audio-Corpus-German/datasetStatisticClean.zip"


def get_args():
    parser = argparse.ArgumentParser(
        formatter_class=argparse.ArgumentDefaultsHelpFormatter,
        description="Download HUI-Audio-Corpus-German and create manifests with predefined split. "
        "Please check details about the corpus in https://github.com/iisys-hof/HUI-Audio-Corpus-German.",
    )
    parser.add_argument("--data-root", required=True, type=Path, help="where the resulting dataset will reside.")
    parser.add_argument("--manifests-root", required=True, type=Path, help="where the manifests files will reside.")
    parser.add_argument("--set-type", default="clean", choices=["full", "clean"], type=str)
    parser.add_argument("--min-duration", default=0.1, type=float)
    parser.add_argument("--max-duration", default=15, type=float)
    parser.add_argument(
        "--num-workers",
        default=-1,
        type=int,
        help="Specify the max number of concurrently Python workers processes. "
        "If -1 all CPUs are used. If 1 no parallel computing is used.",
    )
    parser.add_argument(
        "--normalize-text",
        default=False,
        action='store_true',
        help="Normalize original text and add a new entry 'normalized_text' to .json file if True.",
    )
    parser.add_argument(
        "--val-num-utts-per-speaker",
        default=1,
        type=int,
        help="Specify the number of utterances for each speaker in val split. All speakers are covered.",
    )
    parser.add_argument(
        "--test-num-utts-per-speaker",
        default=1,
        type=int,
        help="Specify the number of utterances for each speaker in test split. All speakers are covered.",
    )
    parser.add_argument(
        "--seed-for-ds-split",
        default=100,
        type=float,
        help="Seed for deterministic split of train/dev/test, NVIDIA's default is 100",
    )
    args = parser.parse_args()
    return args


def __maybe_download_file(source_url, destination_path):
    if not destination_path.exists():
        logging.info(f"Downloading data: {source_url} --> {destination_path}")
        tmp_file_path = destination_path.with_suffix(".tmp")
        urllib.request.urlretrieve(source_url, filename=tmp_file_path)
        tmp_file_path.rename(destination_path)
    else:
        logging.info(f"Skipped downloading data because it exists: {destination_path}")


def __extract_file(filepath, data_dir):
    logging.info(f"Unzipping data: {filepath} --> {data_dir}")
    shutil.unpack_archive(filepath, data_dir)
    logging.info(f"Unzipping data is complete: {filepath}.")


def __save_json(json_file, dict_list):
    logging.info(f"Saving JSON split to {json_file}.")
    with open(json_file, "w") as f:
        for d in dict_list:
            f.write(json.dumps(d) + "\n")


def __process_data(
    dataset_path, stat_path_root, speaker_id, min_duration, max_duration, val_size, test_size, seed_for_ds_split,
):
    logging.info(f"Preparing JSON split for speaker {speaker_id}.")
    # parse statistic.txt
    stat_path = stat_path_root / "statistic.txt"
    with open(stat_path, 'r') as fstat:
        lines = fstat.readlines()
        num_utts = int(lines[4].strip().split()[-1])
        hours = round(float(lines[9].strip().split()[-1]) / 3600.0, 2)

    # parse overview.csv to generate JSON splits.
    overview_path = stat_path_root / "overview.csv"
    entries = []
    with open(overview_path, 'r') as foverview:
        # Let's skip the header
        foverview.readline()
        for line in tqdm(foverview):
            file_stem, duration, *_, text = line.strip().split("|")
            duration = float(duration)

            # file_stem -> dir_name (e.g. maerchen_01_f000051 -> maerchen)
            dir_name = "_".join(file_stem.split("_")[:-2])
            audio_path = dataset_path / dir_name / "wavs" / f"{file_stem}.wav"

            if min_duration <= duration <= max_duration:
                entry = {
                    "audio_filepath": str(audio_path),
                    "duration": duration,
                    "text": text,
                    "speaker": speaker_id,
                }
                entries.append(entry)

    random.Random(seed_for_ds_split).shuffle(entries)
    train_size = len(entries) - val_size - test_size
    if train_size <= 0:
        logging.warning(f"Skipped speaker {speaker_id}. Not enough data for train, val and test.")
        train, val, test, is_skipped = [], [], [], True
    else:
        logging.info(f"Preparing JSON split for speaker {speaker_id} is complete.")
        train, val, test, is_skipped = (
            entries[:train_size],
            entries[train_size : train_size + val_size],
            entries[train_size + val_size :],
            False,
        )

    return {
        "train": train,
        "val": val,
        "test": test,
        "is_skipped": is_skipped,
        "hours": hours,
        "num_utts": num_utts,
    }


def __text_normalization(json_file, num_workers=-1):
    text_normalizer_call_kwargs = {
        "punct_pre_process": True,
        "punct_post_process": True,
    }
    text_normalizer = Normalizer(
        lang="de", input_case="cased", overwrite_cache=True, cache_dir=str(json_file.parent / "cache_dir"),
    )

    def normalizer_call(x):
        return text_normalizer.normalize(x, **text_normalizer_call_kwargs)

    def add_normalized_text(line_dict):
        normalized_text = normalizer_call(line_dict["text"])
        line_dict.update({"normalized_text": normalized_text})
        return line_dict

    logging.info(f"Normalizing text for {json_file}.")
    with open(json_file, 'r', encoding='utf-8') as fjson:
        lines = fjson.readlines()
        # Note: you need to verify which backend works well on your cluster.
        # backend="loky" is fine on multi-core Ubuntu OS; backend="threading" on Slurm.
        dict_list = Parallel(n_jobs=num_workers)(
            delayed(add_normalized_text)(json.loads(line)) for line in tqdm(lines)
        )

    json_file_text_normed = json_file.parent / f"{json_file.stem}_text_normed{json_file.suffix}"
    with open(json_file_text_normed, 'w', encoding="utf-8") as fjson_norm:
        for dct in dict_list:
            fjson_norm.write(json.dumps(dct) + "\n")
    logging.info(f"Normalizing text is complete: {json_file} --> {json_file_text_normed}")


def main():
    args = get_args()
    data_root = args.data_root
    manifests_root = args.manifests_root
    set_type = args.set_type

    dataset_root = data_root / f"HUI-Audio-Corpus-German-{set_type}"
    dataset_root.mkdir(parents=True, exist_ok=True)

    if set_type == "full":
        data_source = URLS_FULL
        stats_source = URL_STATS_FULL
    elif set_type == "clean":
        data_source = URLS_CLEAN
        stats_source = URL_STATS_CLEAN
    else:
        raise ValueError(f"Unknown {set_type}. Please choose either clean or full.")

    # download and unzip dataset stats
    zipped_stats_path = dataset_root / Path(stats_source).name
    __maybe_download_file(stats_source, zipped_stats_path)
    __extract_file(zipped_stats_path, dataset_root)

    # download datasets
    # Note: you need to verify which backend works well on your cluster.
    # backend="loky" is fine on multi-core Ubuntu OS; backend="threading" on Slurm.
    Parallel(n_jobs=args.num_workers)(
        delayed(__maybe_download_file)(data_url, dataset_root / Path(data_url).name)
        for _, data_url in data_source.items()
    )

    # unzip datasets
    # Note: you need to verify which backend works well on your cluster.
    # backend="loky" is fine on multi-core Ubuntu OS; backend="threading" on Slurm.
    Parallel(n_jobs=args.num_workers)(
        delayed(__extract_file)(dataset_root / Path(data_url).name, dataset_root)
        for _, data_url in data_source.items()
    )

    # generate json files for train/val/test splits
    stats_path_root = dataset_root / Path(stats_source).stem / "speacker"
    entries_train, entries_val, entries_test = [], [], []
    speaker_entries = []
    num_speakers = 0
    for child in stats_path_root.iterdir():
        if child.is_dir():
            speaker = child.name
            num_speakers += 1
            speaker_stats_root = stats_path_root / speaker
            speaker_data_path = dataset_root / speaker

            logging.info(f"Processing Speaker: {speaker}")
            results = __process_data(
                speaker_data_path,
                speaker_stats_root,
                num_speakers,
                args.min_duration,
                args.max_duration,
                args.val_num_utts_per_speaker,
                args.test_num_utts_per_speaker,
                args.seed_for_ds_split,
            )

            entries_train.extend(results["train"])
            entries_val.extend(results["val"])
            entries_test.extend(results["test"])

            speaker_entry = {
                "speaker_name": speaker,
                "speaker_id": num_speakers,
                "hours": results["hours"],
                "num_utts": results["num_utts"],
                "is_skipped": results["is_skipped"],
            }
            speaker_entries.append(speaker_entry)

    # shuffle in place across multiple speakers
    random.Random(args.seed_for_ds_split).shuffle(entries_train)
    random.Random(args.seed_for_ds_split).shuffle(entries_val)
    random.Random(args.seed_for_ds_split).shuffle(entries_test)

    # save speaker stats.
    df = pd.DataFrame.from_records(speaker_entries)
    df.sort_values(by="hours", ascending=False, inplace=True)
    spk2id_file_path = manifests_root / "spk2id.csv"
    df.to_csv(spk2id_file_path, index=False)
    logging.info(f"Saving Speaker to ID mapping to {spk2id_file_path}.")

    # save json splits.
    train_json = manifests_root / "train_manifest.json"
    val_json = manifests_root / "val_manifest.json"
    test_json = manifests_root / "test_manifest.json"
    __save_json(train_json, entries_train)
    __save_json(val_json, entries_val)
    __save_json(test_json, entries_test)

    # normalize text if requested. New json file, train_manifest_text_normed.json, will be generated.
    if args.normalize_text:
        __text_normalization(train_json, args.num_workers)
        __text_normalization(val_json, args.num_workers)
        __text_normalization(test_json, args.num_workers)


if __name__ == "__main__":
    main()