File size: 13,765 Bytes
176db1e
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7892bf9d4ee0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7892bf9d4f70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7892bf9d5000>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7892bf9d5090>", "_build": "<function ActorCriticPolicy._build at 0x7892bf9d5120>", "forward": "<function ActorCriticPolicy.forward at 0x7892bf9d51b0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7892bf9d5240>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7892bf9d52d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7892bf9d5360>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7892bf9d53f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7892bf9d5480>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7892bf9d5510>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7892bf9d0f80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1710794206329682716, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADMFpT1V30Y+1vRIvTE4Wr6lPRM9SJp1vQAAAAAAAAAAZqaxvNwh6D7aNXA8xi+bvopFHD2bET49AAAAAAAAAAAzB5i74eqrulp+ybt584w8OJOFOxMidb0AAIA/AACAPw0luz2QiKo/MGRXPj07175RhKE9RlUavAAAAAAAAAAATdVlPVmlSz5lbU49xysgvmxxvz0GTUu9AAAAAAAAAACzaB+9D/ECvCdjG71bCZU8xnpWPWr1eL0AAIA/AAAAAOY9wj1hxos+krwUvqv7nb4JMRC85hS7vQAAAAAAAAAAM+8tvClwebptGSKz1fDUsD4qhLqXdMEzAACAPwAAgD8A9Iy95GXGPoafij2TMJ++xy7DvDK4hT0AAAAAAAAAAJrf8zx70CU/zr3vPI+Sqr6dM+88FfVcvQAAAAAAAAAAoCymPrN6bz8qtKk+13vyvpB6xz4ozO07AAAAAAAAAADNugm9mAaDPfWN5T28k3y+Ao+RPR4XHrwAAAAAAAAAAE3iHD0UIJO6ML7sOrV4rTVcU2y6njIJugAAgD8AAIA/GpmcPU7G8D2CkV++GyByvk2EW7x6vuK8AAAAAAAAAABNMxO+yrpkPwZchDxc7Mq+U+D5vSMYTj0AAAAAAAAAAC2JML6hTKA/fCvIvgOJ9r6lOGi+EpFfvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVMAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG2TQswtapyMAWyUTSkBjAF0lEdAlVmk2kzoEHV9lChoBkdAcMrGnXNC7mgHS/5oCEdAlVpCpBHCoHV9lChoBkdAcL08F6iTMmgHTUABaAhHQJVbiDe0ojR1fZQoaAZHQHBnSncclw9oB00zAWgIR0CVXCR2KVIJdX2UKGgGR0Bydakdmxt6aAdNIQFoCEdAlVyJwKjSHHV9lChoBkdAcHQKWcBltmgHTQIBaAhHQJVctxWDHwR1fZQoaAZHQG95u1ndwehoB00WAWgIR0CVXZ+eOGTLdX2UKGgGR0Bx79SbYsd1aAdNDQFoCEdAlV4x1PnB+HV9lChoBkdAbgbaoMrmQ2gHTQwBaAhHQJVeRpJwsGx1fZQoaAZHQGzRze40/GFoB0v1aAhHQJVed5/smfJ1fZQoaAZHQHEA0fPomoloB00KAWgIR0CVXoQtjCpFdX2UKGgGR0BukaKLsKLLaAdNMAFoCEdAlWAnlKbrknV9lChoBkdAcud/DtPYWmgHTRIBaAhHQJVgx47ihnJ1fZQoaAZHQG63IMKCxu9oB00CAWgIR0CVYWmCAc1gdX2UKGgGR0ByaDIjnmq6aAdNBQFoCEdAlWGo593KS3V9lChoBkdAbe5PQfIS12gHS/JoCEdAlWIrnDBMz3V9lChoBkdAbuYlSCOFQGgHTQwBaAhHQJVidfG+9J11fZQoaAZHQHOOIA80UGpoB01EAWgIR0CVYo1AJLM+dX2UKGgGR0Btn6/20zCUaAdNIgFoCEdAlWQ4nndO7HV9lChoBkdAcdL/IsAeaWgHS/poCEdAlWUI5YHPeHV9lChoBkdAcZVbuMMqjWgHTQ4BaAhHQJVlJmWdEst1fZQoaAZHQHA8PmcOLBNoB00mAWgIR0CVZTXd0q6OdX2UKGgGR0ByocZR8+ibaAdNLQFoCEdAlWVK0hNdq3V9lChoBkdAchk6LOzIFWgHS/poCEdAlWVUKArhBXV9lChoBkdAcVfgv114gWgHTTgBaAhHQJVlY2jwhGJ1fZQoaAZHQHCTwW8AaNxoB00VAWgIR0CVZaXuVopQdX2UKGgGR0BzYpxMnJDFaAdNSQFoCEdAlWcrJOnEVHV9lChoBkdAdAKMefZmI2gHTQ4BaAhHQJVnbFCLMs91fZQoaAZHQHItJa7mMfloB0v6aAhHQJVneAQQL/l1fZQoaAZHQHJO59JBgNRoB00OAWgIR0CVaI7tRekYdX2UKGgGR0ByUtgeA/cGaAdL/GgIR0CVaOLDye7MdX2UKGgGR0BtJ7FId2gWaAdNJgFoCEdAlWmHp4bCJ3V9lChoBkdAbjV3W4EwFmgHTSYBaAhHQJVqb+6y0KJ1fZQoaAZHQG7ndIwudwxoB0vtaAhHQJVqtHxz7uV1fZQoaAZHQHLFLkwN9YxoB01HAWgIR0CVa404BFNMdX2UKGgGR0BwrY5IYm9haAdL8WgIR0CVa7CMglnidX2UKGgGR0ByEQ+QlruZaAdNCAFoCEdAlWxwzUI9knV9lChoBkdAcWthpxm03WgHTQYBaAhHQJVsgxmCiAV1fZQoaAZHQG7WxhDw6QxoB00MAWgIR0CVbSgy/KyOdX2UKGgGR0BwoczMzMzNaAdNGgFoCEdAlW070jC53HV9lChoBkdAcIqe7+T/yWgHTUMBaAhHQJVuTAIppex1fZQoaAZHQHJ14VuaWopoB01YAWgIR0CVbqIvalDXdX2UKGgGR0BxpWF6AvtdaAdL/WgIR0CVbtRDCxeLdX2UKGgGR0BxQoZUDMePaAdNMwFoCEdAlYJ8/hVENXV9lChoBkdAbOq45tFa0WgHTQ0BaAhHQJWC+saKk2x1fZQoaAZHQHEuGd/axotoB0v5aAhHQJWDD7N0NjN1fZQoaAZHQHEh3fEXLvFoB01aAWgIR0CVg1b7CSA6dX2UKGgGR0BwNlMCcPOIaAdNSAFoCEdAlYRXQhOgx3V9lChoBkdAcD4bF0gbImgHTSABaAhHQJWFCmYSg5B1fZQoaAZHQHFVcKXv6TJoB00bAWgIR0CVhSzLfUF0dX2UKGgGR0Bu/xsfq5byaAdNBgFoCEdAlYWMlHBk7XV9lChoBkdAcHvDx9XtB2gHTQsBaAhHQJWGjS4OMER1fZQoaAZHQGyhbkfcN6RoB00qAWgIR0CVhpqW1MM7dX2UKGgGR0Bv78GgSOBEaAdNFQFoCEdAlYcE/OdGzHV9lChoBkdActWy+pOvdWgHTSkBaAhHQJWIoQpWmxd1fZQoaAZHQG/CuJ+DvmZoB007AWgIR0CViVEuQIUrdX2UKGgGR0ByoGt9x6v8aAdNKAFoCEdAlYouxjawlnV9lChoBkdAcixT238XN2gHTSUBaAhHQJWKhvGZNPB1fZQoaAZHQHKq39Nvfj1oB00mAWgIR0CVitDHfdhzdX2UKGgGR0BumUDIRywOaAdNAQFoCEdAlYtpXQtz0nV9lChoBkdAchUyEcsDn2gHTQYBaAhHQJWMMM1CPZJ1fZQoaAZHQHGxitvGZNRoB00LAWgIR0CVjOa/yoXLdX2UKGgGR0ByNmagElmfaAdL9WgIR0CVjXJPqLTAdX2UKGgGR0Bv5jIaLn9vaAdNIgFoCEdAlY1v/io86nV9lChoBkdAcS8gFX7tRmgHTRQBaAhHQJWPPu7YkE91fZQoaAZHQHHpgSzw+dNoB00QAWgIR0CVj3SPluFYdX2UKGgGR0ByrISyt3fRaAdNIwFoCEdAlY+SaJAMUnV9lChoBkdAbnvD4xk/bGgHS/poCEdAlY+t4A0bcXV9lChoBkdAbW69dNWU8mgHTRwBaAhHQJWQoRHww0x1fZQoaAZHQHCeirT6SDBoB00fAWgIR0CVkQB4Uvf1dX2UKGgGR0BwbSfXf642aAdNCAFoCEdAlZGeRgZ0jnV9lChoBkdAcgqaoMrmQ2gHS+NoCEdAlZHcpkPMCHV9lChoBkdAcIFVzZHuqmgHTQ4BaAhHQJWT979hqj91fZQoaAZHQG7TXb/Ot4loB00CAWgIR0CVlEbz9S/CdX2UKGgGR0BrXRoGpuMuaAdNOQFoCEdAlZRNbs4T9XV9lChoBkdAcjbV7Qb++GgHTVsBaAhHQJWUr58BuGd1fZQoaAZHQHBbDeO4oZ1oB00HAWgIR0CVlWMw1zhhdX2UKGgGR0ByAgxL0z0paAdNJgFoCEdAlZX0TcqOLnV9lChoBkdAbfVVWCEpRWgHTRsBaAhHQJWWC/+Kjzt1fZQoaAZHQHG8J/gBLf1oB01jAWgIR0CVli92HLzPdX2UKGgGR0ByB63UhFEzaAdL/2gIR0CVlueAuqWDdX2UKGgGR0Bx3c6ij+JhaAdL/2gIR0CVlzdEb5uZdX2UKGgGR0BwhfiGWUr1aAdNCAFoCEdAlZdakEcKgXV9lChoBkdAcBKbBoEjgWgHTQEBaAhHQJWYY078vVV1fZQoaAZHQG0l/KQq7RRoB00qAWgIR0CVmIs0YTCcdX2UKGgGR0Bv3eQ6p5u7aAdNHgFoCEdAlZmmJBPbf3V9lChoBkdAb5IzeoDPnmgHTRABaAhHQJWZzpJPIn11fZQoaAZHQG2D97F85S5oB00UAWgIR0CVmj2PT5O8dX2UKGgGR0BxaZnuiN83aAdL+WgIR0CVm17aIvaldX2UKGgGR0BwstS/CZWraAdL/GgIR0CVm7/j81n/dX2UKGgGR0BzjS/WUbDNaAdNHgFoCEdAlZyyzgMtsnV9lChoBkdAcOmNX5nDi2gHS/1oCEdAlZzMK9f1H3V9lChoBkdAc6Cv2oNutWgHTRYBaAhHQJWc3a11GLF1fZQoaAZHQHMTMRtgrpdoB0v/aAhHQJWdgvGp++d1fZQoaAZHQHD17pA2Q4loB00RAWgIR0CVndhCdBjXdX2UKGgGR0ByAp2ovSMMaAdNLQFoCEdAlZ7EYfnwHHV9lChoBkdAcdbYp2ECeWgHTQ0BaAhHQJWfOosI3R51fZQoaAZHQHAxiBGx2StoB00sAWgIR0CVoA+DvmYCdX2UKGgGR0Bs/Aku6ErYaAdNQAFoCEdAlaBYh6jWTXV9lChoBkdAcYQBu4wyqWgHTQ8BaAhHQJWgcnRb8m91ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 252, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_shape": [8], "low": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "low_repr": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high_repr": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}