language:
- es
license: gpl-3.0
tags:
- generated_from_trainer
model-index:
- name: flisol-cba-martin-fierro
results: []
widget:
- text: Aqui me pongo a cantar
example_title: Martin Fierro
Hugging Face: IA Colaborativa
En este repositorio estar谩 disponible el c贸digo y modelo que entren茅 para la charla "Hugging Face: IA Colaborativa" del FLISoL de C贸rdoba, Argentina, de 2023.
Para inicializar el setup hace falta tener instalado y activado
git-lfs
.
Pueden clonar el repositorio con:
$ git clone https://huggingface.co/crscardellino/flisol-cba-martin-fierro
Y luego crean el entorno e instalan los requerimientos.
$ python -m venv flisol-venv
$ source ./flisol-venv/bin/activate
(flisol-venv) $ pip install -r requirements.txt
El c贸digo est谩 probado con Python 3.10, pero deber铆a funcionar con Python >= 3.8. En los requerimientos est谩 organizado para instalar PyTorch v2.0.0 para cpu, pero pueden ajustarlo para utilizar GPUs suponiendo que cumplan los requerimientos de CUDA.
License
flisol-cba-martin-fierro
Copyright (C) 2023 Cristian Cardellino
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
Model Specifications (Auto Generated)
This model is a fine-tuned version of
DeepESP/gpt2-spanish on the
./data/martin-fierro_train.txt
dataset. It achieves the following results on
the evaluation set:
- Loss: 3.9067
Model description
GPT-2 model finetuned on the poem "El Gaucho Martin Fierro"
Intended uses & limitations
This was trained for the talk "Hugging Face: IA Colaborativa" @ FLISoL de C贸rdoba, Argentina, 2023.
Training and evaluation data
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
4.3864 | 1.0 | 18 | 4.2025 |
3.948 | 2.0 | 36 | 4.0440 |
3.7962 | 3.0 | 54 | 3.9804 |
3.6105 | 4.0 | 72 | 3.9458 |
3.4444 | 5.0 | 90 | 3.9280 |
3.3855 | 6.0 | 108 | 3.9192 |
3.3142 | 7.0 | 126 | 3.9091 |
3.2192 | 8.0 | 144 | 3.9074 |
3.1615 | 9.0 | 162 | 3.9070 |
3.1637 | 10.0 | 180 | 3.9067 |
Framework versions
- Transformers 4.28.1
- Pytorch 2.0.0+cpu
- Datasets 2.11.0
- Tokenizers 0.13.3