File size: 11,806 Bytes
f22980e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import SiLU
import yaml
def _init_weights(module, std=0.041666666666666664):
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
class RotaryPositionalEmbedding(nn.Module):
"""
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py#L240
Rotary Positional Embedding (RoPE) for transformers Implemntation derived from https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py
"""
def __init__(self, dim: int, theta: float = 10000.0):
super().__init__()
self.dim = dim
self.theta = theta
def forward(self, x: torch.Tensor, seq_len: int) -> torch.Tensor:
"""
Apply rotary positional embedding to the input tensor.
Args:
x (torch.Tensor): Input tensor of shape # B, T, H, D
seq_len (int): Sequence length. #T
Returns:
torch.Tensor: Output tensor with rotary positional embeddings applied.
"""
B, T, H, H_D = x.shape
# Generate position indices
position = torch.arange(T, dtype=torch.float32, device=x.device).unsqueeze(-1)
# Generate frequencies
freqs = torch.exp(
torch.arange(0, H_D, 2, dtype=torch.float32, device=x.device) *
-(torch.log(torch.tensor(self.theta)) / H_D)
)
# Compute sinusoids
sinusoid = position * freqs
sin = torch.sin(sinusoid)
cos = torch.cos(sinusoid)
# Reshape sin and cos to match the input tensor's shape
sin = sin.unsqueeze(0).unsqueeze(2) # Shape: (1, T, 1, D // 2)
cos = cos.unsqueeze(0).unsqueeze(2) # Shape: (1, T, 1, D // 2)
# Apply rotary embeddings
x_rotated = x.clone()
x_rotated[..., 0::2] = x[..., 0::2] * cos - x[..., 1::2] * sin
x_rotated[..., 1::2] = x[..., 1::2] * cos + x[..., 0::2] * sin
return x_rotated
class LlamaAttention(nn.Module):
"""
(self_attn): LlamaAttention(
(q_proj): Linear(in_features=576, out_features=576, bias=False)
(k_proj): Linear(in_features=576, out_features=192, bias=False)
(v_proj): Linear(in_features=576, out_features=192, bias=False)
(o_proj): Linear(in_features=576, out_features=576, bias=False)
)
"""
def __init__(self, config, rotary_emb):
super().__init__()
self.config = config
self.num_attention_heads = self.config['num_attention_heads']
self.hidden_size = self.config['hidden_size']
# Ensure the hidden size is divisible by the number of attention heads
if self.hidden_size % self.num_attention_heads != 0:
raise ValueError(
f"hidden_size ({self.hidden_size}) must be divisible by num_attention_heads ({self.num_attention_heads})"
)
self.num_key_value_heads = self.config['num_key_value_heads']
self.head_dim = self.hidden_size // self.num_attention_heads
self.q_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False) # D,D
self.k_proj = nn.Linear(self.hidden_size, self.head_dim*self.num_key_value_heads, bias=False) # D,D/H
self.v_proj = nn.Linear(self.hidden_size, self.head_dim*self.num_key_value_heads, bias=False) # D,D/H
self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False) # D,D
# Convert the mask to boolean type when creating it
# self.register_buffer("mask",
# torch.triu(torch.ones(self.config['max_position_embeddings'],
# self.config['max_position_embeddings']),
# diagonal=1)) # Convert to boolean
self.rotary_pos_emb = rotary_emb
def forward(self, x):
B, T, C = x.size()
q = self.q_proj(x) # B,T,D
k = self.k_proj(x) # B,T,D/H
v = self.v_proj(x) # B,T,D/H
q = q.view(B, T, self.num_attention_heads, self.head_dim) # B,T,H,D
k = k.view(B, T, self.num_key_value_heads, self.head_dim) # B,T,H,D
v = v.view(B, T, self.num_key_value_heads, self.head_dim) # B,T,H,D
q = q.transpose(1,2) # B,H,T,D
k = k.transpose(1,2) # B,num_key_value_heads,T,D
v = v.transpose(1,2) # B,num_key_value_heads,T,D
# apply rotary positional embedding
q = self.rotary_pos_emb(q, T)
k = self.rotary_pos_emb(k, T)
# Repeat k/v heads if num_key_value_heads < num_attention_heads
if self.num_key_value_heads != self.num_attention_heads:
k = k.repeat_interleave(self.num_attention_heads // self.num_key_value_heads, dim=1) # B,kv_head,T,D -> B,H,T,D
v = v.repeat_interleave(self.num_attention_heads // self.num_key_value_heads, dim=1) # B,kv_head,T,D -> B,H,T,D
# Manual attention Stats
# Q(B,H,T,D) @K.T(B,H,D,T) = Q.K_T (B,H,T,T)
# attn_scores = q @ k.transpose(-2,-1) # B,H,T,T
# mask_bool = self.mask[:T,:T].bool() # T,T
# attn_scores.masked_fill_(mask_bool, -torch.inf) # B,H,T,T
# attn_weights = F.softmax(attn_scores/k.size(-1)**0.5, dim=-1) # B,H,T,T
# context_vector = attn_weights @ v # B,H,T,T * B,H,T,D = B,H,T,D
# context_vector = context_vector.transpose(1,2) # B,T,H,D
# context_vector = context_vector.contiguous().view(B,T,C) # B,T,H,D -> B,T,D
# Manual attention Stats ENDS
# Scaled dot-product attention STARTS
attn_out = F.scaled_dot_product_attention(q, k, v, is_causal=True)
context_vector = attn_out.transpose(1,2).reshape(B,T,C)
# Scaled dot-product attention ENDS
context_vector = self.o_proj(context_vector)
return context_vector
class LlamaMLP(nn.Module):
"""
(mlp): LlamaMLP(
(gate_proj): Linear(in_features=576, out_features=1536, bias=False)
(up_proj): Linear(in_features=576, out_features=1536, bias=False)
(down_proj): Linear(in_features=1536, out_features=576, bias=False)
(act_fn): SiLU()
)
"""
def __init__(self, config):
super().__init__()
self.config = config
self.gate_proj = nn.Linear(self.config['hidden_size'], self.config['intermediate_size'], bias=False)
self.up_proj = nn.Linear(self.config['hidden_size'], self.config['intermediate_size'], bias=False)
self.down_proj = nn.Linear(self.config['intermediate_size'], self.config['hidden_size'], bias=False)
self.act_fn = SiLU()
def forward(self, x):
gate = self.gate_proj(x)
up = self.up_proj(x)
down = self.down_proj(self.act_fn(gate)*up)
return down
class LlamaRMSNorm(nn.Module):
"""
(norm): LlamaRMSNorm((576,), eps=1e-05)
# RMSNorm Formula:
# RMS(x) = sqrt((1 / d) * sum(x_i^2 for i in range(d)))
# x_normalized = x / RMS(x)
# output = gamma * x_normalized
"""
def __init__(self, config):
super().__init__()
self.config = config
self.eps = self.config['rms_norm_eps']
self.weight = nn.Parameter(torch.ones(self.config['hidden_size']))
def forward(self, x):
rms = torch.rsqrt(torch.mean(x ** 2, dim=-1, keepdim=True) + self.eps)
return self.weight *rms * x
class LlamaDecoderLayer(nn.Module):
def __init__(self, config, rotary_emb):
super().__init__()
self.config = config
self.self_attn = LlamaAttention(self.config, rotary_emb)
self.mlp = LlamaMLP(self.config)
self.input_layernorm = LlamaRMSNorm(self.config)
self.post_attention_layernorm = LlamaRMSNorm(self.config)
def forward(self, x):
residual = x
x = self.input_layernorm(x)
x = self.self_attn(x)
x = x + residual
residual = x
x = self.post_attention_layernorm(x)
x = self.mlp(x)
x = x + residual
return x
class LlamaModel(nn.Module):
def __init__(self, config):
super().__init__()
self.init_method = config['init_method']
self.config = config['model_config']
self.embed_tokens = nn.Embedding(self.config['vocab_size'], self.config['hidden_size'])
self.rotary_emb = RotaryPositionalEmbedding(self.config['hidden_size'], self.config['rope_theta'])
self.layers = nn.ModuleList([LlamaDecoderLayer(self.config, self.rotary_emb) for _ in range(self.config['num_hidden_layers'])])
self.norm = LlamaRMSNorm(self.config)
self.lm_head = nn.Linear(self.config['hidden_size'], self.config['vocab_size'], bias=False)
if self.config['tie_word_embeddings']:
self.lm_head.weight = self.embed_tokens.weight
self.apply(lambda m: _init_weights(m, self.init_method['std']))
def forward(self, x, y=None):
x = self.embed_tokens(x)
for layer in self.layers:
x = layer(x)
x = self.norm(x)
logits = self.lm_head(x) # B,T,V
logits = logits.view(-1, logits.size(-1)) # Shape: [B*T, V]
if y is not None:
y = y.view(-1) # Shape: [B*T]
loss = torch.nn.functional.cross_entropy(logits, y)
return logits, loss
else:
return logits, None
def generate(self, idx, max_new_tokens, context_length, temperature=1.0, top_k=None, eos_token=None, device=None):
model = self.to(device)
idx = idx.to(device)
model.eval()
for _ in range(max_new_tokens):
idx_cond = idx[:, -context_length:]
with torch.no_grad():
logits, _ = model(idx_cond) # Unpack both logits and loss (ignore loss)
logits = logits.view(idx_cond.shape[0], -1, model.config['vocab_size']) # Reshape to [batch, seq, vocab]
# Get the logits for the last token only
logits = logits[:, -1, :] # Shape: [batch_size, vocab_size]
if top_k is not None:
# top k sampling
top_logits, top_pos = torch.topk(logits, top_k)
min_logit = top_logits[:, -1].unsqueeze(-1)
logits = torch.where(logits < min_logit,
torch.tensor(float('-inf')).to(logits.device),
logits)
# temperature scaling
if temperature > 0.0:
logits /= temperature
probs = torch.softmax(logits, dim=-1)
idx_next = torch.multinomial(probs, num_samples=1)
else:
idx_next = torch.argmax(logits, dim=-1, keepdim=True)
if idx_next.item() == eos_token:
break
idx = torch.cat((idx, idx_next), dim=1)
model.train()
return idx
# if __name__ == "__main__":
# torch.manual_seed(0)
# config = yaml.load(open("config_smollm2_135M.yaml", "r"), Loader=yaml.FullLoader)
# print(config.keys())
# model_config = config['model']['model_config']
# print(model_config)
# model = LlamaModel(config['model'])
# x_tokens = torch.randint(0, model_config['vocab_size'], (1, 10)) # Generate random token indices
# print(model(x_tokens).shape)
# total_params = sum(p.numel() for p in model.parameters())
# print(f"Total parameters: {total_params}") #134515008
# print(model) |