metadata
library_name: transformers
license: cc-by-4.0
base_model: NazaGara/NER-fine-tuned-BETO
tags:
- generated_from_trainer
datasets:
- biobert_json
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: NER-finetuning-BETO-CM-V3
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: biobert_json
type: biobert_json
config: Biobert_json
split: validation
args: Biobert_json
metrics:
- name: Precision
type: precision
value: 0.9332171260485892
- name: Recall
type: recall
value: 0.9462056776759086
- name: F1
type: f1
value: 0.9396665204036859
- name: Accuracy
type: accuracy
value: 0.9769126559714795
NER-finetuning-BETO-CM-V3
This model is a fine-tuned version of NazaGara/NER-fine-tuned-BETO on the biobert_json dataset. It achieves the following results on the evaluation set:
- Loss: 0.1234
- Precision: 0.9332
- Recall: 0.9462
- F1: 0.9397
- Accuracy: 0.9769
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.3448 | 1.0 | 612 | 0.1106 | 0.9187 | 0.9255 | 0.9221 | 0.9719 |
0.1036 | 2.0 | 1224 | 0.0990 | 0.9202 | 0.9507 | 0.9352 | 0.9763 |
0.073 | 3.0 | 1836 | 0.0982 | 0.9356 | 0.9493 | 0.9424 | 0.9783 |
0.057 | 4.0 | 2448 | 0.1070 | 0.9304 | 0.9493 | 0.9397 | 0.9771 |
0.0405 | 5.0 | 3060 | 0.1034 | 0.9353 | 0.9486 | 0.9419 | 0.9783 |
0.0361 | 6.0 | 3672 | 0.1081 | 0.9280 | 0.9474 | 0.9376 | 0.9767 |
0.0287 | 7.0 | 4284 | 0.1106 | 0.9309 | 0.9490 | 0.9398 | 0.9777 |
0.0284 | 8.0 | 4896 | 0.1182 | 0.9288 | 0.9463 | 0.9375 | 0.9768 |
0.0212 | 9.0 | 5508 | 0.1195 | 0.9340 | 0.9464 | 0.9402 | 0.9774 |
0.0191 | 10.0 | 6120 | 0.1234 | 0.9332 | 0.9462 | 0.9397 | 0.9769 |
Framework versions
- Transformers 4.46.2
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3