--- library_name: transformers license: cc-by-4.0 base_model: NazaGara/NER-fine-tuned-BETO tags: - generated_from_trainer datasets: - biobert_json metrics: - precision - recall - f1 - accuracy model-index: - name: NER-finetuning-BETO-CM-V3 results: - task: name: Token Classification type: token-classification dataset: name: biobert_json type: biobert_json config: Biobert_json split: validation args: Biobert_json metrics: - name: Precision type: precision value: 0.9332171260485892 - name: Recall type: recall value: 0.9462056776759086 - name: F1 type: f1 value: 0.9396665204036859 - name: Accuracy type: accuracy value: 0.9769126559714795 --- # NER-finetuning-BETO-CM-V3 This model is a fine-tuned version of [NazaGara/NER-fine-tuned-BETO](https://huggingface.co/NazaGara/NER-fine-tuned-BETO) on the biobert_json dataset. It achieves the following results on the evaluation set: - Loss: 0.1234 - Precision: 0.9332 - Recall: 0.9462 - F1: 0.9397 - Accuracy: 0.9769 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.3448 | 1.0 | 612 | 0.1106 | 0.9187 | 0.9255 | 0.9221 | 0.9719 | | 0.1036 | 2.0 | 1224 | 0.0990 | 0.9202 | 0.9507 | 0.9352 | 0.9763 | | 0.073 | 3.0 | 1836 | 0.0982 | 0.9356 | 0.9493 | 0.9424 | 0.9783 | | 0.057 | 4.0 | 2448 | 0.1070 | 0.9304 | 0.9493 | 0.9397 | 0.9771 | | 0.0405 | 5.0 | 3060 | 0.1034 | 0.9353 | 0.9486 | 0.9419 | 0.9783 | | 0.0361 | 6.0 | 3672 | 0.1081 | 0.9280 | 0.9474 | 0.9376 | 0.9767 | | 0.0287 | 7.0 | 4284 | 0.1106 | 0.9309 | 0.9490 | 0.9398 | 0.9777 | | 0.0284 | 8.0 | 4896 | 0.1182 | 0.9288 | 0.9463 | 0.9375 | 0.9768 | | 0.0212 | 9.0 | 5508 | 0.1195 | 0.9340 | 0.9464 | 0.9402 | 0.9774 | | 0.0191 | 10.0 | 6120 | 0.1234 | 0.9332 | 0.9462 | 0.9397 | 0.9769 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3