File size: 3,753 Bytes
960dfdb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 |
from dataclasses import dataclass
import torch
import torch.nn as nn
from transformers.modeling_utils import PreTrainedModel
from .configuration_fidnet_v3 import LayoutDmFIDNetV3Config
@dataclass
class LayoutDmFIDNetV3Output(object):
logit_dict: torch.Tensor
logit_cls: torch.Tensor
bbox_pred: torch.Tensor
class TransformerWithToken(nn.Module):
def __init__(self, d_model: int, nhead: int, dim_feedforward: int, num_layers: int):
super().__init__()
self.token = nn.Parameter(torch.randn(1, 1, d_model))
token_mask = torch.zeros(1, 1, dtype=torch.bool)
self.register_buffer("token_mask", token_mask)
self.core = nn.TransformerEncoder(
nn.TransformerEncoderLayer(
d_model=d_model,
nhead=nhead,
dim_feedforward=dim_feedforward,
),
num_layers=num_layers,
)
def forward(self, x, src_key_padding_mask):
# x: [N, B, E]
# padding_mask: [B, N]
# `False` for valid values
# `True` for padded values
B = x.size(1)
token = self.token.expand(-1, B, -1)
x = torch.cat([token, x], dim=0)
token_mask = self.token_mask.expand(B, -1)
padding_mask = torch.cat([token_mask, src_key_padding_mask], dim=1)
x = self.core(x, src_key_padding_mask=padding_mask)
return x
class LayoutDmFIDNetV3(PreTrainedModel):
config_class = LayoutDmFIDNetV3Config
def __init__(self, config: LayoutDmFIDNetV3Config):
super().__init__(config)
self.config = config
# encoder
self.emb_label = nn.Embedding(config.num_labels, config.d_model)
self.fc_bbox = nn.Linear(4, config.d_model)
self.enc_fc_in = nn.Linear(config.d_model * 2, config.d_model)
self.enc_transformer = TransformerWithToken(
d_model=config.d_model,
dim_feedforward=config.d_model // 2,
nhead=config.nhead,
num_layers=config.num_layers,
)
self.fc_out_disc = nn.Linear(config.d_model, 1)
# decoder
self.pos_token = nn.Parameter(torch.rand(config.max_bbox, 1, config.d_model))
self.dec_fc_in = nn.Linear(config.d_model * 2, config.d_model)
te = nn.TransformerEncoderLayer(
d_model=config.d_model,
nhead=config.nhead,
dim_feedforward=config.d_model // 2,
)
self.dec_transformer = nn.TransformerEncoder(te, num_layers=config.num_layers)
self.fc_out_cls = nn.Linear(config.d_model, config.num_labels)
self.fc_out_bbox = nn.Linear(config.d_model, 4)
def extract_features(self, bbox, label, padding_mask):
b = self.fc_bbox(bbox)
l = self.emb_label(label)
x = self.enc_fc_in(torch.cat([b, l], dim=-1))
x = torch.relu(x).permute(1, 0, 2)
x = self.enc_transformer(x, padding_mask)
return x[0]
def forward(self, bbox, label, padding_mask):
B, N, _ = bbox.size()
x = self.extract_features(bbox, label, padding_mask)
logit_disc = self.fc_out_disc(x).squeeze(-1)
x = x.unsqueeze(0).expand(N, -1, -1)
t = self.pos_token[:N].expand(-1, B, -1)
x = torch.cat([x, t], dim=-1)
x = torch.relu(self.dec_fc_in(x))
x = self.dec_transformer(x, src_key_padding_mask=padding_mask)
# x = x.permute(1, 0, 2)[~padding_mask]
x = x.permute(1, 0, 2)
# logit_cls: [B, N, L] bbox_pred: [B, N, 4]
logit_cls = self.fc_out_cls(x)
bbox_pred = torch.sigmoid(self.fc_out_bbox(x))
return LayoutDmFIDNetV3Output(
logit_disc=logit_disc, logit_cls=logit_cls, bbox_pred=bbox_pred
)
|