File size: 15,766 Bytes
1b5ee0e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 |
import cv2
import numpy as np
from fractions import Fraction
from exifread.utils import Ratio
from PIL import Image
from skimage.color import rgb2hsv, hsv2rgb
from skimage.exposure import rescale_intensity
from skimage.filters import gaussian as sk_gaussian
from skimage.restoration import denoise_tv_bregman
from scipy import signal
from colour_demosaicing import demosaicing_CFA_Bayer_Menon2007
from utils.misc import *
from utils.color import *
from ips.wb import illumination_parameters_estimation
def normalize(raw_image, black_level, white_level):
if isinstance(black_level, list) and len(black_level) == 1:
black_level = float(black_level[0])
if isinstance(white_level, list) and len(white_level) == 1:
white_level = float(white_level[0])
black_level_mask = black_level
if type(black_level) is list and len(black_level) == 4:
if type(black_level[0]) is Ratio:
black_level = ratios2floats(black_level)
if type(black_level[0]) is Fraction:
black_level = fractions2floats(black_level)
black_level_mask = np.zeros(raw_image.shape)
idx2by2 = [[0, 0], [0, 1], [1, 0], [1, 1]]
step2 = 2
for i, idx in enumerate(idx2by2):
black_level_mask[idx[0]::step2, idx[1]::step2] = black_level[i]
normalized_image = raw_image.astype(np.float32) - black_level_mask
# if some values were smaller than black level
normalized_image[normalized_image < 0] = 0
normalized_image = normalized_image / (white_level - black_level_mask)
return normalized_image
def demosaic(norm_image, cfa_pattern):
return demosaicing_CFA_Bayer_Menon2007(norm_image, decode_cfa_pattern(cfa_pattern))
def denoise(demosaiced_image, y_noise_profile, cc_noise_profile):
ycc_demosaiced = rgb2ycc(demosaiced_image[:, :, ::-1])
y_demosaiced = ycc_demosaiced[:, :, 0]
cc_demosaiced = ycc_demosaiced[:, :, 1:]
current_image_y = y_demosaiced
current_image_cc = gaussian(cc_demosaiced, sigma=cc_noise_profile)
current_image_ycc = np.concatenate([
np.expand_dims(current_image_y, -1),
current_image_cc
], axis=-1)
return ycc2rgb(current_image_ycc)[:, :, ::-1]
def raw_color_denoise(demosaiced_image, cc_noise_profile):
ycc_demosaiced = rgb2ycc(demosaiced_image[:, :, ::-1])
cc_demosaiced = ycc_demosaiced[:, :, 1:]
cc_demosaiced_denoised = sk_gaussian(cc_demosaiced, sigma=cc_noise_profile)
ycc_demosaiced[:, :, 1:] = cc_demosaiced_denoised
return ycc2rgb(ycc_demosaiced)[:, :, ::-1]
def luminance_denoise(tone_mapped_image, weight=20.0):
ycc_tone_mapped = rgb2ycc(tone_mapped_image[:, :, ::-1])
y_tone_mapped = ycc_tone_mapped[:, :, 0]
y_tone_mapped_denoised = denoise_tv_bregman(y_tone_mapped, weight=weight)
ycc_tone_mapped[:, :, 0] = np.clip(y_tone_mapped_denoised, 1e-4, 0.999)
return ycc2rgb(ycc_tone_mapped)[:, :, ::-1]
def white_balance(denoised_image, metadata, max_repeat_limit=10000):
if metadata["wb_estimation"] is not None:
as_shot_neutral = np.array(metadata["wb_estimation"])
white_balanced_image = np.dot(denoised_image, as_shot_neutral.T)
return np.clip(white_balanced_image, 0.0, 1.0)
illumuniation_estimation_algorithm = metadata["wb_method"]
as_shot_neutral = illumination_parameters_estimation(denoised_image, illumuniation_estimation_algorithm)
if isinstance(as_shot_neutral[0], Ratio):
as_shot_neutral = ratios2floats(as_shot_neutral)
as_shot_neutral = np.asarray(as_shot_neutral)
# transform vector into matrix
if as_shot_neutral.shape == (3,):
as_shot_neutral = np.diag(1./as_shot_neutral)
assert as_shot_neutral.shape == (3, 3)
repeat_count = 0
while (as_shot_neutral[0, 0] < 2.3 and as_shot_neutral[2, 2] < 2.3) or (as_shot_neutral[0, 0] < 2.02 or as_shot_neutral[2, 2] < 1.92):
if repeat_count < max_repeat_limit:
as_shot_neutral = illumination_parameters_estimation(denoised_image, illumuniation_estimation_algorithm)
if isinstance(as_shot_neutral[0], Ratio):
as_shot_neutral = ratios2floats(as_shot_neutral)
as_shot_neutral = np.asarray(as_shot_neutral)
# transform vector into matrix
if as_shot_neutral.shape == (3,):
as_shot_neutral = np.diag(1./as_shot_neutral)
assert as_shot_neutral.shape == (3, 3)
else:
print(f"WARNING! Invalid range for illumination matrix and repeated to estimate by '{illumuniation_estimation_algorithm}' so many times. Using 'gw' for illumination estimation now...")
as_shot_neutral = illumination_parameters_estimation(denoised_image, "gw")
if isinstance(as_shot_neutral[0], Ratio):
as_shot_neutral = ratios2floats(as_shot_neutral)
as_shot_neutral = np.asarray(as_shot_neutral)
# transform vector into matrix
if as_shot_neutral.shape == (3,):
as_shot_neutral = np.diag(1./as_shot_neutral)
assert as_shot_neutral.shape == (3, 3)
break
repeat_count += 1
white_balanced_image = np.dot(denoised_image, as_shot_neutral.T)
metadata["wb_estimation"] = as_shot_neutral.tolist()
# print(as_shot_neutral)
return np.clip(white_balanced_image, 0.0, 1.0)
def xyz_transform(wb_image, color_matrix):
if isinstance(color_matrix[0], Fraction):
color_matrix = fractions2floats(color_matrix)
xyz2cam = np.reshape(np.asarray(color_matrix), (3, 3))
# normalize rows (needed?)
xyz2cam = xyz2cam / np.sum(xyz2cam, axis=1, keepdims=True)
# inverse
cam2xyz = np.linalg.inv(xyz2cam)
# for now, use one matrix # TODO: interpolate btween both
# simplified matrix multiplication
xyz_image = cam2xyz[np.newaxis, np.newaxis, :, :] * wb_image[:, :, np.newaxis, :]
xyz_image = np.sum(xyz_image, axis=-1)
xyz_image = np.clip(xyz_image, 0.0, 1.0)
return xyz_image
def xyz_to_srgb(xyz_image):
# srgb2xyz = np.array([[0.4124564, 0.3575761, 0.1804375],
# [0.2126729, 0.7151522, 0.0721750],
# [0.0193339, 0.1191920, 0.9503041]])
# xyz2srgb = np.linalg.inv(srgb2xyz)
xyz2srgb = np.array([[3.2404542, -1.5371385, -0.4985314],
[-0.9692660, 1.8760108, 0.0415560],
[0.0556434, -0.2040259, 1.0572252]])
# normalize rows (needed?)
xyz2srgb = xyz2srgb / np.sum(xyz2srgb, axis=-1, keepdims=True)
srgb_image = xyz2srgb[np.newaxis, np.newaxis,
:, :] * xyz_image[:, :, np.newaxis, :]
srgb_image = np.sum(srgb_image, axis=-1)
srgb_image = np.clip(srgb_image, 0.0, 1.0)
return srgb_image
def apply_tmo_flash(Y, a):
Y[Y == 0] = 1e-9
return Y / (Y + a * np.exp(np.mean(np.log(Y))))
def apply_tmo_storm(Y, a, kernels):
rows, cols = Y.shape
Y[Y == 0] = 1e-9
return sum([
Y / (Y + a * np.exp(cv2.boxFilter(np.log(Y), -1, (int(min(rows // kernel, cols // kernel)),) * 2)))
for kernel in kernels
]) / len(kernels)
def apply_tmo_nite(Y, CC, kernels):
rows, cols = Y.shape
Y[Y == 0] = 1e-9
y_mu, y_std = max(Y.mean(), 0.001), Y.std()
cc_std = CC.std()
# tmo_offset = np.exp(y_mu * (cc_std / y_std) * 100)
tmo_offset = 10. / np.sqrt(np.exp(np.log(y_mu) * (np.log(cc_std) / np.log(y_std))) * 100)
# print(f"Y mean: {y_mu:.3f}, Y std: {y_std:.3f}, CC std: {cc_std:.3f}, Offset: {tmo_offset:.3f}")
# tmo_scale = 8.5 + min(6.5, round(tmo_offset))
tmo_scale = min(28., max(5., tmo_offset))
# print(f"TMO scale: {tmo_scale}")
return sum([
Y / np.clip((Y + tmo_scale * np.exp(cv2.boxFilter(np.log(Y), -1, (int(min(rows // kernel, cols // kernel)),) * 2))), 0., 1.)
for kernel in kernels
]) / len(kernels)
def perform_tone_mapping(source, metadata):
ycc_source = rgb2ycc(source[:, :, ::-1])
y_source = ycc_source[:, :, 0]
cc_source = ycc_source[:, :, 1:]
if metadata["tmo_type"].lower() == "flash":
y_hat_source = apply_tmo_flash(y_source, metadata["tmo_scale"])
elif metadata["tmo_type"].lower() == "storm":
y_hat_source = apply_tmo_storm(y_source, metadata["tmo_scale"], metadata["tmo_kernels"])
else: # nite
y_hat_source = apply_tmo_nite(y_source, cc_source, metadata["tmo_kernels"])
ycc_nite = np.concatenate([
np.expand_dims(y_hat_source, -1),
cc_source
], axis=-1)
result = ycc2rgb(ycc_nite)[:, :, ::-1]
if metadata["tmo_do_leap"]:
target_mean_grayscale = 0.282 # 72 / 255
result = np.clip(result, a_min=0., a_max=1.)
grayscale = cv2.cvtColor(result * 255., cv2.COLOR_BGR2GRAY) / 255.
result *= target_mean_grayscale / np.mean(grayscale)
result = np.clip(result, a_min=0., a_max=1.)
return result
def global_mean_contrast(input_im, beta=1.0):
mu_ = input_im.mean(axis=(0, 1), keepdims=True)
output_im = mu_ + beta * (input_im - mu_)
output_im = np.where(0 > output_im, input_im, output_im)
output_im = np.where(1 < output_im, input_im, output_im)
return output_im
def s_curve_correction(input_im, alpha=0.5, lambd=0.5):
ycc_ = rgb2ycc(input_im[:, :, ::-1])
Y = ycc_[:, :, 0]
Y_hat = alpha + np.where(
Y >= alpha,
(1 - alpha) * np.power(((Y - alpha) / (1 - alpha)), lambd),
-alpha * np.power((1 - (Y / alpha)), lambd)
)
ycc_[:, :, 0] = Y_hat
bgr_ = np.clip(ycc2rgb(ycc_)[:, :, ::-1], a_min=0., a_max=1.)
return bgr_
def histogram_stretching(input_im):
hsv = rgb2hsv(input_im[:, :, ::-1])
V = hsv[:, :, 0]
p0_01, p99 = np.percentile(V, (0.01, 99.99))
if 0.7 > p99:
_, p99 = np.percentile(V, (0.01, 99.5))
V_hat = rescale_intensity(V, in_range=(p0_01, p99))
hsv[:, :, 0] = V_hat
bgr_ = np.clip(hsv2rgb(hsv), a_min=0., a_max=1.)[:, :, ::-1]
return bgr_
def conditional_contrast_correction(input_im, threshold=0.5):
ycc_ = rgb2ycc(input_im[:, :, ::-1])
Y = ycc_[:, :, 0]
y_avg = Y.mean()
if y_avg > threshold:
Y_hat = Y.copy()
idx = Y_hat <= 0.0031308
Y_hat[idx] *= 12.92
Y_hat[idx == False] = (Y_hat[idx == False] ** (1.0 / 2.4)) * 1.055 - 0.055
else:
alpha = 0.5
lambd = 1.2
Y_hat = alpha + np.where(
Y >= alpha,
(1 - alpha) * np.power(((Y - alpha) / (1 - alpha)), lambd),
-alpha * np.power((1 - (Y / alpha)), lambd)
)
ycc_[:, :, 0] = Y_hat
bgr_ = np.clip(ycc2rgb(ycc_)[:, :, ::-1], a_min=0., a_max=1.)
return bgr_
def memory_color_enhancement(data, color_space="srgb", illuminant="D65", clip_range=[0, 1], cie_version="1964"):
target_hue = [30., -125., 100.]
hue_preference = [20., -118., 130.]
hue_sigma = [20., 10., 5.]
is_both_side = [True, False, False]
multiplier = [0.6, 0.6, 0.6]
chroma_preference = [25., 14., 30.]
chroma_sigma = [10., 10., 5.]
# RGB to xyz
data = rgb2xyz(data, color_space, clip_range)
# xyz to lab
data = xyz2lab(data, cie_version, illuminant)
# lab to lch
data = lab2lch(data)
# hue squeezing
# we are traversing through different color preferences
height, width, _ = data.shape
hue_correction = np.zeros((height, width), dtype=np.float32)
for i in range(0, np.size(target_hue)):
delta_hue = data[:, :, 2] - hue_preference[i]
if is_both_side[i]:
weight_temp = np.exp(-np.power(data[:, :, 2] - target_hue[i], 2) / (2 * hue_sigma[i] ** 2)) + \
np.exp(-np.power(data[:, :, 2] + target_hue[i], 2) / (2 * hue_sigma[i] ** 2))
else:
weight_temp = np.exp(-np.power(data[:, :, 2] - target_hue[i], 2) / (2 * hue_sigma[i] ** 2))
weight_hue = multiplier[i] * weight_temp / np.max(weight_temp)
weight_chroma = np.exp(-np.power(data[:, :, 1] - chroma_preference[i], 2) / (2 * chroma_sigma[i] ** 2))
hue_correction = hue_correction + np.multiply(np.multiply(delta_hue, weight_hue), weight_chroma)
# correct the hue
data[:, :, 2] = data[:, :, 2] - hue_correction
# lch to lab
data = lch2lab(data)
# lab to xyz
data = lab2xyz(data, cie_version, illuminant)
# xyz to rgb
data = xyz2rgb(data, color_space, clip_range)
data = outOfGamutClipping(data, range=clip_range[1])
return data
def unsharp_masking(data, gaussian_kernel_size=[5, 5], gaussian_sigma=2.0, slope=1.5, tau_threshold=0.05, gamma_speed=4., clip_range=[0, 1]):
# create gaussian kernel
gaussian_kernel = gaussian(gaussian_kernel_size, gaussian_sigma)
# convolve the image with the gaussian kernel
# first input is the image
# second input is the kernel
# output shape will be the same as the first input
# boundary will be padded by using symmetrical method while convolving
if np.ndim(data) > 2:
image_blur = np.empty(np.shape(data), dtype=np.float32)
for i in range(0, np.shape(data)[2]):
image_blur[:, :, i] = signal.convolve2d(data[:, :, i], gaussian_kernel, mode="same", boundary="symm")
else:
image_blur = signal.convolve2d(data, gaussian_kernel, mode="same", boundary="symm")
# the high frequency component image
image_high_pass = data - image_blur
# soft coring (see in utility)
# basically pass the high pass image via a slightly nonlinear function
tau_threshold = tau_threshold * clip_range[1]
# add the soft cored high pass image to the original and clip
# within range and return
def soft_coring(img_hp, slope, tau_threshold, gamma_speed):
return slope * np.float32(img_hp) * (1. - np.exp(-((np.abs(img_hp / tau_threshold))**gamma_speed)))
return np.clip(data + soft_coring(image_high_pass, slope, tau_threshold, gamma_speed), clip_range[0], clip_range[1])
def to_uint8(srgb):
return (srgb * 255).astype(np.uint8)
def resize(img, width=None, height=None):
if width is None or height is None:
return img
img_pil = Image.fromarray(img)
out_size = (width, height)
if img_pil.size == out_size:
return img
out_img = img_pil.resize(out_size, Image.Resampling.LANCZOS)
out_img = np.array(out_img)
return out_img
def fix_orientation(image, orientation):
# 1 = Horizontal (normal)
# 2 = Mirror horizontal
# 3 = Rotate 180
# 4 = Mirror vertical
# 5 = Mirror horizontal and rotate 270 CW
# 6 = Rotate 90 CW
# 7 = Mirror horizontal and rotate 90 CW
# 8 = Rotate 270 CW
orientation_dict = {
"Horizontal (normal)": 1,
"Mirror horizontal": 2,
"Rotate 180": 3,
"Mirror vertical": 4,
"Mirror horizontal and rotate 270 CW": 5,
"Rotate 90 CW": 6,
"Mirror horizontal and rotate 90 CW": 7,
"Rotate 270 CW": 8
}
if type(orientation) is list:
orientation = orientation[0]
orientation = orientation_dict[orientation]
if orientation == 1:
pass
elif orientation == 2:
image = cv2.flip(image, 0)
elif orientation == 3:
image = cv2.rotate(image, cv2.ROTATE_180)
elif orientation == 4:
image = cv2.flip(image, 1)
elif orientation == 5:
image = cv2.flip(image, 0)
image = cv2.rotate(image, cv2.ROTATE_90_COUNTERCLOCKWISE)
elif orientation == 6:
image = cv2.rotate(image, cv2.ROTATE_90_CLOCKWISE)
elif orientation == 7:
image = cv2.flip(image, 0)
image = cv2.rotate(image, cv2.ROTATE_90_CLOCKWISE)
elif orientation == 8:
image = cv2.rotate(image, cv2.ROTATE_90_COUNTERCLOCKWISE)
return image
|