File size: 15,766 Bytes
1b5ee0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
import cv2
import numpy as np

from fractions import Fraction
from exifread.utils import Ratio
from PIL import Image
from skimage.color import rgb2hsv, hsv2rgb
from skimage.exposure import rescale_intensity
from skimage.filters import gaussian as sk_gaussian
from skimage.restoration import denoise_tv_bregman
from scipy import signal

from colour_demosaicing import demosaicing_CFA_Bayer_Menon2007

from utils.misc import *
from utils.color import *
from ips.wb import illumination_parameters_estimation


def normalize(raw_image, black_level, white_level):
    if isinstance(black_level, list) and len(black_level) == 1:
        black_level = float(black_level[0])
    if isinstance(white_level, list) and len(white_level) == 1:
        white_level = float(white_level[0])
    black_level_mask = black_level
    if type(black_level) is list and len(black_level) == 4:
        if type(black_level[0]) is Ratio:
            black_level = ratios2floats(black_level)
        if type(black_level[0]) is Fraction:
            black_level = fractions2floats(black_level)
        black_level_mask = np.zeros(raw_image.shape)
        idx2by2 = [[0, 0], [0, 1], [1, 0], [1, 1]]
        step2 = 2
        for i, idx in enumerate(idx2by2):
            black_level_mask[idx[0]::step2, idx[1]::step2] = black_level[i]
    normalized_image = raw_image.astype(np.float32) - black_level_mask
    # if some values were smaller than black level
    normalized_image[normalized_image < 0] = 0
    normalized_image = normalized_image / (white_level - black_level_mask)
    return normalized_image


def demosaic(norm_image, cfa_pattern):
    return demosaicing_CFA_Bayer_Menon2007(norm_image, decode_cfa_pattern(cfa_pattern))


def denoise(demosaiced_image, y_noise_profile, cc_noise_profile):
    ycc_demosaiced = rgb2ycc(demosaiced_image[:, :, ::-1])
    y_demosaiced = ycc_demosaiced[:, :, 0]
    cc_demosaiced = ycc_demosaiced[:, :, 1:]
    current_image_y = y_demosaiced
    current_image_cc = gaussian(cc_demosaiced, sigma=cc_noise_profile)
    current_image_ycc = np.concatenate([
        np.expand_dims(current_image_y, -1), 
        current_image_cc
    ], axis=-1)
    return ycc2rgb(current_image_ycc)[:, :, ::-1]


def raw_color_denoise(demosaiced_image, cc_noise_profile):
    ycc_demosaiced = rgb2ycc(demosaiced_image[:, :, ::-1])
    cc_demosaiced = ycc_demosaiced[:, :, 1:]
    cc_demosaiced_denoised = sk_gaussian(cc_demosaiced, sigma=cc_noise_profile)
    ycc_demosaiced[:, :, 1:] = cc_demosaiced_denoised
    return ycc2rgb(ycc_demosaiced)[:, :, ::-1]


def luminance_denoise(tone_mapped_image, weight=20.0):
    ycc_tone_mapped = rgb2ycc(tone_mapped_image[:, :, ::-1])
    y_tone_mapped = ycc_tone_mapped[:, :, 0]
    y_tone_mapped_denoised = denoise_tv_bregman(y_tone_mapped, weight=weight)
    ycc_tone_mapped[:, :, 0] = np.clip(y_tone_mapped_denoised, 1e-4, 0.999)
    return ycc2rgb(ycc_tone_mapped)[:, :, ::-1]


def white_balance(denoised_image, metadata, max_repeat_limit=10000):
    if metadata["wb_estimation"] is not None:
        as_shot_neutral = np.array(metadata["wb_estimation"])
        white_balanced_image = np.dot(denoised_image, as_shot_neutral.T)
        return np.clip(white_balanced_image, 0.0, 1.0)
    illumuniation_estimation_algorithm = metadata["wb_method"]
    as_shot_neutral = illumination_parameters_estimation(denoised_image, illumuniation_estimation_algorithm)    
    
    if isinstance(as_shot_neutral[0], Ratio):
        as_shot_neutral = ratios2floats(as_shot_neutral)

    as_shot_neutral = np.asarray(as_shot_neutral)
    # transform vector into matrix
    if as_shot_neutral.shape == (3,):
        as_shot_neutral = np.diag(1./as_shot_neutral)

    assert as_shot_neutral.shape == (3, 3)
    repeat_count = 0
    while (as_shot_neutral[0, 0] < 2.3 and as_shot_neutral[2, 2] < 2.3) or (as_shot_neutral[0, 0] < 2.02 or as_shot_neutral[2, 2] < 1.92):
        if repeat_count < max_repeat_limit:
            as_shot_neutral = illumination_parameters_estimation(denoised_image, illumuniation_estimation_algorithm)
            if isinstance(as_shot_neutral[0], Ratio):
                as_shot_neutral = ratios2floats(as_shot_neutral)

            as_shot_neutral = np.asarray(as_shot_neutral)
            # transform vector into matrix
            if as_shot_neutral.shape == (3,):
                as_shot_neutral = np.diag(1./as_shot_neutral)

            assert as_shot_neutral.shape == (3, 3)
        else:
            print(f"WARNING! Invalid range for illumination matrix and repeated to estimate by '{illumuniation_estimation_algorithm}' so many times. Using 'gw' for illumination estimation now...")
            as_shot_neutral = illumination_parameters_estimation(denoised_image, "gw")  
            if isinstance(as_shot_neutral[0], Ratio):
                as_shot_neutral = ratios2floats(as_shot_neutral)

            as_shot_neutral = np.asarray(as_shot_neutral)
            # transform vector into matrix
            if as_shot_neutral.shape == (3,):
                as_shot_neutral = np.diag(1./as_shot_neutral)

            assert as_shot_neutral.shape == (3, 3)
            break
        repeat_count += 1
    
    white_balanced_image = np.dot(denoised_image, as_shot_neutral.T)
    metadata["wb_estimation"] = as_shot_neutral.tolist()

    # print(as_shot_neutral)
    return np.clip(white_balanced_image, 0.0, 1.0)


def xyz_transform(wb_image, color_matrix):
    if isinstance(color_matrix[0], Fraction):
        color_matrix = fractions2floats(color_matrix)
    xyz2cam = np.reshape(np.asarray(color_matrix), (3, 3))
    # normalize rows (needed?)
    xyz2cam = xyz2cam / np.sum(xyz2cam, axis=1, keepdims=True)
    # inverse
    cam2xyz = np.linalg.inv(xyz2cam)
    # for now, use one matrix  # TODO: interpolate btween both
    # simplified matrix multiplication
    xyz_image = cam2xyz[np.newaxis, np.newaxis, :, :] * wb_image[:, :, np.newaxis, :]
    xyz_image = np.sum(xyz_image, axis=-1)
    xyz_image = np.clip(xyz_image, 0.0, 1.0)
    return xyz_image


def xyz_to_srgb(xyz_image):
    # srgb2xyz = np.array([[0.4124564, 0.3575761, 0.1804375],
    #                      [0.2126729, 0.7151522, 0.0721750],
    #                      [0.0193339, 0.1191920, 0.9503041]])

    # xyz2srgb = np.linalg.inv(srgb2xyz)

    xyz2srgb = np.array([[3.2404542, -1.5371385, -0.4985314],
                         [-0.9692660, 1.8760108, 0.0415560],
                         [0.0556434, -0.2040259, 1.0572252]])

    # normalize rows (needed?)
    xyz2srgb = xyz2srgb / np.sum(xyz2srgb, axis=-1, keepdims=True)

    srgb_image = xyz2srgb[np.newaxis, np.newaxis,
                          :, :] * xyz_image[:, :, np.newaxis, :]
    srgb_image = np.sum(srgb_image, axis=-1)
    srgb_image = np.clip(srgb_image, 0.0, 1.0)
    return srgb_image


def apply_tmo_flash(Y, a):
    Y[Y == 0] = 1e-9
    return Y / (Y + a * np.exp(np.mean(np.log(Y))))


def apply_tmo_storm(Y, a, kernels):
    rows, cols = Y.shape
    Y[Y == 0] = 1e-9
    return sum([
        Y / (Y + a * np.exp(cv2.boxFilter(np.log(Y), -1, (int(min(rows // kernel, cols // kernel)),) * 2)))
        for kernel in kernels
    ]) / len(kernels)


def apply_tmo_nite(Y, CC, kernels):
    rows, cols = Y.shape
    Y[Y == 0] = 1e-9
    y_mu, y_std = max(Y.mean(), 0.001), Y.std()
    cc_std = CC.std()
    # tmo_offset = np.exp(y_mu * (cc_std / y_std) * 100)
    tmo_offset = 10. / np.sqrt(np.exp(np.log(y_mu) * (np.log(cc_std) / np.log(y_std))) * 100)
    # print(f"Y mean: {y_mu:.3f}, Y std: {y_std:.3f}, CC std: {cc_std:.3f}, Offset: {tmo_offset:.3f}")

    # tmo_scale = 8.5 + min(6.5, round(tmo_offset))
    tmo_scale = min(28., max(5., tmo_offset))
    # print(f"TMO scale: {tmo_scale}")
    return sum([
        Y / np.clip((Y + tmo_scale * np.exp(cv2.boxFilter(np.log(Y), -1, (int(min(rows // kernel, cols // kernel)),) * 2))), 0., 1.)
        for kernel in kernels
    ]) / len(kernels)


def perform_tone_mapping(source, metadata):
    ycc_source = rgb2ycc(source[:, :, ::-1])
    y_source = ycc_source[:, :, 0]
    cc_source = ycc_source[:, :, 1:]

    if metadata["tmo_type"].lower() == "flash":
        y_hat_source = apply_tmo_flash(y_source, metadata["tmo_scale"])
    elif metadata["tmo_type"].lower() == "storm":
        y_hat_source = apply_tmo_storm(y_source, metadata["tmo_scale"], metadata["tmo_kernels"])
    else:  # nite
        y_hat_source = apply_tmo_nite(y_source, cc_source, metadata["tmo_kernels"])

    ycc_nite = np.concatenate([
        np.expand_dims(y_hat_source, -1), 
        cc_source
    ], axis=-1)
    result = ycc2rgb(ycc_nite)[:, :, ::-1]
    if metadata["tmo_do_leap"]:
        target_mean_grayscale = 0.282  # 72 / 255
        result = np.clip(result, a_min=0., a_max=1.)
        grayscale = cv2.cvtColor(result * 255., cv2.COLOR_BGR2GRAY) / 255.
        result *= target_mean_grayscale / np.mean(grayscale)
    result = np.clip(result, a_min=0., a_max=1.)
    return result


def global_mean_contrast(input_im, beta=1.0):
    mu_ = input_im.mean(axis=(0, 1), keepdims=True)
    output_im = mu_ + beta * (input_im - mu_)
    output_im = np.where(0 > output_im, input_im, output_im)
    output_im = np.where(1 < output_im, input_im, output_im)
    return output_im


def s_curve_correction(input_im, alpha=0.5, lambd=0.5):
    ycc_ = rgb2ycc(input_im[:, :, ::-1])
    Y = ycc_[:, :, 0]
    Y_hat = alpha + np.where(
        Y >= alpha, 
        (1 - alpha) * np.power(((Y - alpha) / (1 - alpha)), lambd), 
        -alpha * np.power((1 - (Y / alpha)), lambd)
    )
    ycc_[:, :, 0] = Y_hat
    bgr_ = np.clip(ycc2rgb(ycc_)[:, :, ::-1], a_min=0., a_max=1.)
    return bgr_


def histogram_stretching(input_im):
    hsv = rgb2hsv(input_im[:, :, ::-1])
    V = hsv[:, :, 0]
    p0_01, p99 = np.percentile(V, (0.01, 99.99))
    if 0.7 > p99:
         _, p99 = np.percentile(V, (0.01, 99.5))

    V_hat = rescale_intensity(V, in_range=(p0_01, p99))
    hsv[:, :, 0] = V_hat
    bgr_ = np.clip(hsv2rgb(hsv), a_min=0., a_max=1.)[:, :, ::-1]
    return bgr_


def conditional_contrast_correction(input_im, threshold=0.5):
    ycc_ = rgb2ycc(input_im[:, :, ::-1])
    Y = ycc_[:, :, 0]
    y_avg = Y.mean()
    if y_avg > threshold:
        Y_hat = Y.copy()
        idx = Y_hat <= 0.0031308
        Y_hat[idx] *= 12.92
        Y_hat[idx == False] = (Y_hat[idx == False] ** (1.0 / 2.4)) * 1.055 - 0.055
    else:
        alpha = 0.5
        lambd = 1.2
        Y_hat = alpha + np.where(
            Y >= alpha, 
            (1 - alpha) * np.power(((Y - alpha) / (1 - alpha)), lambd), 
            -alpha * np.power((1 - (Y / alpha)), lambd)
        )
    ycc_[:, :, 0] = Y_hat
    bgr_ = np.clip(ycc2rgb(ycc_)[:, :, ::-1], a_min=0., a_max=1.)
    return bgr_


def memory_color_enhancement(data, color_space="srgb", illuminant="D65", clip_range=[0, 1], cie_version="1964"):
    target_hue = [30., -125., 100.]
    hue_preference = [20., -118., 130.]
    hue_sigma = [20., 10., 5.]
    is_both_side = [True, False, False]
    multiplier = [0.6, 0.6, 0.6]
    chroma_preference = [25., 14., 30.]
    chroma_sigma = [10., 10., 5.]

    # RGB to xyz
    data = rgb2xyz(data, color_space, clip_range)
    # xyz to lab
    data = xyz2lab(data, cie_version, illuminant)
    # lab to lch
    data = lab2lch(data)

    # hue squeezing
    # we are traversing through different color preferences
    height, width, _ = data.shape
    hue_correction = np.zeros((height, width), dtype=np.float32)
    for i in range(0, np.size(target_hue)):

        delta_hue = data[:, :, 2] - hue_preference[i]

        if is_both_side[i]:
            weight_temp = np.exp(-np.power(data[:, :, 2] - target_hue[i], 2) / (2 * hue_sigma[i] ** 2)) + \
                          np.exp(-np.power(data[:, :, 2] + target_hue[i], 2) / (2 * hue_sigma[i] ** 2))
        else:
            weight_temp = np.exp(-np.power(data[:, :, 2] - target_hue[i], 2) / (2 * hue_sigma[i] ** 2))

        weight_hue = multiplier[i] * weight_temp / np.max(weight_temp)

        weight_chroma = np.exp(-np.power(data[:, :, 1] - chroma_preference[i], 2) / (2 * chroma_sigma[i] ** 2))

        hue_correction = hue_correction + np.multiply(np.multiply(delta_hue, weight_hue), weight_chroma)

    # correct the hue
    data[:, :, 2] = data[:, :, 2] - hue_correction

    # lch to lab
    data = lch2lab(data)
    # lab to xyz
    data = lab2xyz(data, cie_version, illuminant)
    # xyz to rgb
    data = xyz2rgb(data, color_space, clip_range)

    data = outOfGamutClipping(data, range=clip_range[1])
    return data


def unsharp_masking(data, gaussian_kernel_size=[5, 5], gaussian_sigma=2.0, slope=1.5, tau_threshold=0.05, gamma_speed=4., clip_range=[0, 1]):
    # create gaussian kernel
    gaussian_kernel = gaussian(gaussian_kernel_size, gaussian_sigma)

    # convolve the image with the gaussian kernel
    # first input is the image
    # second input is the kernel
    # output shape will be the same as the first input
    # boundary will be padded by using symmetrical method while convolving
    if np.ndim(data) > 2:
        image_blur = np.empty(np.shape(data), dtype=np.float32)
        for i in range(0, np.shape(data)[2]):
            image_blur[:, :, i] = signal.convolve2d(data[:, :, i], gaussian_kernel, mode="same", boundary="symm")
    else:
        image_blur = signal.convolve2d(data, gaussian_kernel, mode="same", boundary="symm")

    # the high frequency component image
    image_high_pass = data - image_blur

    # soft coring (see in utility)
    # basically pass the high pass image via a slightly nonlinear function
    tau_threshold = tau_threshold * clip_range[1]

    # add the soft cored high pass image to the original and clip
    # within range and return
    def soft_coring(img_hp, slope, tau_threshold, gamma_speed):
        return slope * np.float32(img_hp) * (1. - np.exp(-((np.abs(img_hp / tau_threshold))**gamma_speed)))
    return np.clip(data + soft_coring(image_high_pass, slope, tau_threshold, gamma_speed), clip_range[0], clip_range[1])


def to_uint8(srgb):
    return (srgb * 255).astype(np.uint8)


def resize(img, width=None, height=None):
    if width is None or height is None:
        return img
    img_pil = Image.fromarray(img)
    out_size = (width, height)
    if img_pil.size == out_size:
        return img
    out_img = img_pil.resize(out_size, Image.Resampling.LANCZOS)
    out_img = np.array(out_img)
    return out_img


def fix_orientation(image, orientation):
    # 1 = Horizontal (normal)
    # 2 = Mirror horizontal
    # 3 = Rotate 180
    # 4 = Mirror vertical
    # 5 = Mirror horizontal and rotate 270 CW
    # 6 = Rotate 90 CW
    # 7 = Mirror horizontal and rotate 90 CW
    # 8 = Rotate 270 CW

    orientation_dict = {
        "Horizontal (normal)": 1,
        "Mirror horizontal": 2,
        "Rotate 180": 3,
        "Mirror vertical": 4,
        "Mirror horizontal and rotate 270 CW": 5,
        "Rotate 90 CW": 6,
        "Mirror horizontal and rotate 90 CW": 7,
        "Rotate 270 CW": 8
    }

    if type(orientation) is list:
        orientation = orientation[0]
    orientation = orientation_dict[orientation]
    if orientation == 1:
        pass
    elif orientation == 2:
        image = cv2.flip(image, 0)
    elif orientation == 3:
        image = cv2.rotate(image, cv2.ROTATE_180)
    elif orientation == 4:
        image = cv2.flip(image, 1)
    elif orientation == 5:
        image = cv2.flip(image, 0)
        image = cv2.rotate(image, cv2.ROTATE_90_COUNTERCLOCKWISE)
    elif orientation == 6:
        image = cv2.rotate(image, cv2.ROTATE_90_CLOCKWISE)
    elif orientation == 7:
        image = cv2.flip(image, 0)
        image = cv2.rotate(image, cv2.ROTATE_90_CLOCKWISE)
    elif orientation == 8:
        image = cv2.rotate(image, cv2.ROTATE_90_COUNTERCLOCKWISE)

    return image