File size: 12,301 Bytes
1b5ee0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
import numpy as np


def rgb2gray(data):
    return 0.299 * data[:, :, 0] + \
           0.587 * data[:, :, 1] + \
           0.114 * data[:, :, 2]


def rgb2ycc(data, rule="bt601"):
    # map to select kr and kb
    kr_kb_dict = {"bt601": [0.299, 0.114],
                  "bt709": [0.2126, 0.0722],
                  "bt2020": [0.2627, 0.0593]}

    kr = kr_kb_dict[rule][0]
    kb = kr_kb_dict[rule][1]
    kg = 1 - (kr + kb)

    output = np.empty(np.shape(data), dtype=np.float32)
    output[:, :, 0] = kr * data[:, :, 0] + \
                      kg * data[:, :, 1] + \
                      kb * data[:, :, 2]
    output[:, :, 1] = 0.5 * ((data[:, :, 2] - output[:, :, 0]) / (1 - kb))
    output[:, :, 2] = 0.5 * ((data[:, :, 0] - output[:, :, 0]) / (1 - kr))

    return output


def ycc2rgb(data, rule="bt601"):
    # map to select kr and kb
    kr_kb_dict = {"bt601": [0.299, 0.114],
                  "bt709": [0.2126, 0.0722],
                  "bt2020": [0.2627, 0.0593]}

    kr = kr_kb_dict[rule][0]
    kb = kr_kb_dict[rule][1]
    kg = 1 - (kr + kb)

    output = np.empty(np.shape(data), dtype=np.float32)
    output[:, :, 0] = 2. * data[:, :, 2] * (1 - kr) + data[:, :, 0]
    output[:, :, 2] = 2. * data[:, :, 1] * (1 - kb) + data[:, :, 0]
    output[:, :, 1] = (data[:, :, 0] - kr * output[:, :, 0] - kb * output[:, :, 2]) / kg

    return output


def degamma_srgb(data, clip_range=[0, 65535]):
    # bring data in range 0 to 1
    data = np.clip(data, clip_range[0], clip_range[1])
    data = np.divide(data, clip_range[1])

    data = np.asarray(data)
    mask = data > 0.04045

    # basically, if data[x, y, c] > 0.04045, data[x, y, c] = ( (data[x, y, c] + 0.055) / 1.055 ) ^ 2.4
    #            else, data[x, y, c] = data[x, y, c] / 12.92
    data[mask] += 0.055
    data[mask] /= 1.055
    data[mask] **= 2.4

    data[np.invert(mask)] /= 12.92

    # rescale
    return np.clip(data * clip_range[1], clip_range[0], clip_range[1])


def degamma_adobe_rgb_1998(data, clip_range=[0, 65535]):
    # bring data in range 0 to 1
    data = np.clip(data, clip_range[0], clip_range[1])
    data = np.divide(data, clip_range[1])

    data = np.power(data, 2.2)  # originally raised to 2.19921875

    # rescale
    return np.clip(data * clip_range[1], clip_range[0], clip_range[1])


def rgb2xyz(data, color_space="srgb", clip_range=[0, 255]):
    # input rgb in range clip_range
    # output xyz is in range 0 to 1
    if color_space == "srgb":
        # degamma / linearization
        data = degamma_srgb(data, clip_range)
        data = np.float32(data)
        data = np.divide(data, clip_range[1])

        # matrix multiplication`
        output = np.empty(np.shape(data), dtype=np.float32)
        output[:, :, 0] = data[:, :, 0] * 0.4124 + data[:, :, 1] * 0.3576 + data[:, :, 2] * 0.1805
        output[:, :, 1] = data[:, :, 0] * 0.2126 + data[:, :, 1] * 0.7152 + data[:, :, 2] * 0.0722
        output[:, :, 2] = data[:, :, 0] * 0.0193 + data[:, :, 1] * 0.1192 + data[:, :, 2] * 0.9505
    elif color_space == "adobe-rgb-1998":
        # degamma / linearization
        data = degamma_adobe_rgb_1998(data, clip_range)
        data = np.float32(data)
        data = np.divide(data, clip_range[1])

        # matrix multiplication
        output = np.empty(np.shape(data), dtype=np.float32)
        output[:, :, 0] = data[:, :, 0] * 0.5767309 + data[:, :, 1] * 0.1855540 + data[:, :, 2] * 0.1881852
        output[:, :, 1] = data[:, :, 0] * 0.2973769 + data[:, :, 1] * 0.6273491 + data[:, :, 2] * 0.0752741
        output[:, :, 2] = data[:, :, 0] * 0.0270343 + data[:, :, 1] * 0.0706872 + data[:, :, 2] * 0.9911085
    elif color_space == "linear":
        # matrix multiplication`
        output = np.empty(np.shape(data), dtype=np.float32)
        data = np.float32(data)
        data = np.divide(data, clip_range[1])
        output[:, :, 0] = data[:, :, 0] * 0.4124 + data[:, :, 1] * 0.3576 + data[:, :, 2] * 0.1805
        output[:, :, 1] = data[:, :, 0] * 0.2126 + data[:, :, 1] * 0.7152 + data[:, :, 2] * 0.0722
        output[:, :, 2] = data[:, :, 0] * 0.0193 + data[:, :, 1] * 0.1192 + data[:, :, 2] * 0.9505
    else:
        print("Warning! color_space must be srgb or adobe-rgb-1998.")
        return

    return output


def gamma_srgb(data, clip_range=[0, 65535]):
    # bring data in range 0 to 1
    data = np.clip(data, clip_range[0], clip_range[1])
    data = np.divide(data, clip_range[1])

    data = np.asarray(data)
    mask = data > 0.0031308

    # basically, if data[x, y, c] > 0.0031308, data[x, y, c] = 1.055 * ( var_R(i, j) ^ ( 1 / 2.4 ) ) - 0.055
    #            else, data[x, y, c] = data[x, y, c] * 12.92
    data[mask] **= 0.4167
    data[mask] *= 1.055
    data[mask] -= 0.055

    data[np.invert(mask)] *= 12.92

    # rescale
    return np.clip(data * clip_range[1], clip_range[0], clip_range[1])


def gamma_adobe_rgb_1998(data, clip_range=[0, 65535]):
    # bring data in range 0 to 1
    data = np.clip(data, clip_range[0], clip_range[1])
    data = np.divide(data, clip_range[1])

    data = np.power(data, 0.4545)

    # rescale
    return np.clip(data * clip_range[1], clip_range[0], clip_range[1])


def xyz2rgb(data, color_space="srgb", clip_range=[0, 255]):
    # input xyz is in range 0 to 1
    # output rgb in clip_range

    # allocate space for output
    output = np.empty(np.shape(data), dtype=np.float32)

    if color_space == "srgb":
        # matrix multiplication
        output[:, :, 0] = data[:, :, 0] * 3.2406 + data[:, :, 1] * -1.5372 + data[:, :, 2] * -0.4986
        output[:, :, 1] = data[:, :, 0] * -0.9689 + data[:, :, 1] * 1.8758 + data[:, :, 2] * 0.0415
        output[:, :, 2] = data[:, :, 0] * 0.0557 + data[:, :, 1] * -0.2040 + data[:, :, 2] * 1.0570

        # gamma to retain nonlinearity
        output = gamma_srgb(output * clip_range[1], clip_range)
    elif color_space == "adobe-rgb-1998":
        # matrix multiplication
        output[:, :, 0] = data[:, :, 0] * 2.0413690 + data[:, :, 1] * -0.5649464 + data[:, :, 2] * -0.3446944
        output[:, :, 1] = data[:, :, 0] * -0.9692660 + data[:, :, 1] * 1.8760108 + data[:, :, 2] * 0.0415560
        output[:, :, 2] = data[:, :, 0] * 0.0134474 + data[:, :, 1] * -0.1183897 + data[:, :, 2] * 1.0154096

        # gamma to retain nonlinearity
        output = gamma_adobe_rgb_1998(output * clip_range[1], clip_range)
    elif color_space == "linear":

        # matrix multiplication
        output[:, :, 0] = data[:, :, 0] * 3.2406 + data[:, :, 1] * -1.5372 + data[:, :, 2] * -0.4986
        output[:, :, 1] = data[:, :, 0] * -0.9689 + data[:, :, 1] * 1.8758 + data[:, :, 2] * 0.0415
        output[:, :, 2] = data[:, :, 0] * 0.0557 + data[:, :, 1] * -0.2040 + data[:, :, 2] * 1.0570

        # gamma to retain nonlinearity
        output = output * clip_range[1]
    else:
        print("Warning! color_space must be srgb or adobe-rgb-1998.")
        return

    return output


def get_xyz_reference(cie_version="1931", illuminant="d65"):
    if cie_version == "1931":
        xyz_reference_dictionary = {"A": [109.850, 100.0, 35.585],
                                    "B": [99.0927, 100.0, 85.313],
                                    "C": [98.074, 100.0, 118.232],
                                    "d50": [96.422, 100.0, 82.521],
                                    "d55": [95.682, 100.0, 92.149],
                                    "d65": [95.047, 100.0, 108.883],
                                    "d75": [94.972, 100.0, 122.638],
                                    "E": [100.0, 100.0, 100.0],
                                    "F1": [92.834, 100.0, 103.665],
                                    "F2": [99.187, 100.0, 67.395],
                                    "F3": [103.754, 100.0, 49.861],
                                    "F4": [109.147, 100.0, 38.813],
                                    "F5": [90.872, 100.0, 98.723],
                                    "F6": [97.309, 100.0, 60.191],
                                    "F7": [95.044, 100.0, 108.755],
                                    "F8": [96.413, 100.0, 82.333],
                                    "F9": [100.365, 100.0, 67.868],
                                    "F10": [96.174, 100.0, 81.712],
                                    "F11": [100.966, 100.0, 64.370],
                                    "F12": [108.046, 100.0, 39.228]}
    elif cie_version == "1964":
        xyz_reference_dictionary = {"A": [111.144, 100.0, 35.200],
                                    "B": [99.178, 100.0, 84.3493],
                                    "C": [97.285, 100.0, 116.145],
                                    "D50": [96.720, 100.0, 81.427],
                                    "D55": [95.799, 100.0, 90.926],
                                    "D65": [94.811, 100.0, 107.304],
                                    "D75": [94.416, 100.0, 120.641],
                                    "E": [100.0, 100.0, 100.0],
                                    "F1": [94.791, 100.0, 103.191],
                                    "F2": [103.280, 100.0, 69.026],
                                    "F3": [108.968, 100.0, 51.965],
                                    "F4": [114.961, 100.0, 40.963],
                                    "F5": [93.369, 100.0, 98.636],
                                    "F6": [102.148, 100.0, 62.074],
                                    "F7": [95.792, 100.0, 107.687],
                                    "F8": [97.115, 100.0, 81.135],
                                    "F9": [102.116, 100.0, 67.826],
                                    "F10": [99.001, 100.0, 83.134],
                                    "F11": [103.866, 100.0, 65.627],
                                    "F12": [111.428, 100.0, 40.353]}
    else:
        print("Warning! cie_version must be 1931 or 1964.")
        return
    return np.divide(xyz_reference_dictionary[illuminant], 100.0)


def xyz2lab(data, cie_version="1931", illuminant="d65"):
    xyz_reference = get_xyz_reference(cie_version, illuminant)

    data = data
    data[:, :, 0] = data[:, :, 0] / xyz_reference[0]
    data[:, :, 1] = data[:, :, 1] / xyz_reference[1]
    data[:, :, 2] = data[:, :, 2] / xyz_reference[2]

    data = np.asarray(data)

    # if data[x, y, c] > 0.008856, data[x, y, c] = data[x, y, c] ^ (1/3)
    # else, data[x, y, c] = 7.787 * data[x, y, c] + 16/116
    mask = data > 0.008856
    data[mask] **= 1. / 3.
    data[np.invert(mask)] *= 7.787
    data[np.invert(mask)] += 16. / 116.

    data = np.float32(data)
    output = np.empty(np.shape(data), dtype=np.float32)
    output[:, :, 0] = 116. * data[:, :, 1] - 16.
    output[:, :, 1] = 500. * (data[:, :, 0] - data[:, :, 1])
    output[:, :, 2] = 200. * (data[:, :, 1] - data[:, :, 2])

    return output


def lab2xyz(data, cie_version="1931", illuminant="d65"):
    output = np.empty(np.shape(data), dtype=np.float32)

    output[:, :, 1] = (data[:, :, 0] + 16.) / 116.
    output[:, :, 0] = (data[:, :, 1] / 500.) + output[:, :, 1]
    output[:, :, 2] = output[:, :, 1] - (data[:, :, 2] / 200.)

    # if output[x, y, c] > 0.008856, output[x, y, c] ^ 3
    # else, output[x, y, c] = ( output[x, y, c] - 16/116 ) / 7.787
    output = np.asarray(output)
    mask = output > 0.008856
    output[mask] **= 3.
    output[np.invert(mask)] -= 16 / 116
    output[np.invert(mask)] /= 7.787

    xyz_reference = get_xyz_reference(cie_version, illuminant)

    output = np.float32(output)
    output[:, :, 0] = output[:, :, 0] * xyz_reference[0]
    output[:, :, 1] = output[:, :, 1] * xyz_reference[1]
    output[:, :, 2] = output[:, :, 2] * xyz_reference[2]

    return output


def lab2lch(data):
    output = np.empty(np.shape(data), dtype=np.float32)

    output[:, :, 0] = data[:, :, 0]  # L transfers directly
    output[:, :, 1] = np.power(np.power(data[:, :, 1], 2) + np.power(data[:, :, 2], 2), 0.5)
    output[:, :, 2] = np.arctan2(data[:, :, 2], data[:, :, 1]) * 180 / np.pi

    return output


def lch2lab(data):
    output = np.empty(np.shape(data), dtype=np.float32)

    output[:, :, 0] = data[:, :, 0]  # L transfers directly
    output[:, :, 1] = np.multiply(np.cos(data[:, :, 2] * np.pi / 180), data[:, :, 1])
    output[:, :, 2] = np.multiply(np.sin(data[:, :, 2] * np.pi / 180), data[:, :, 1])

    return output