File size: 9,788 Bytes
5c362f5 3a11717 ca180a7 3a11717 ca180a7 077a49d ca180a7 077a49d ca180a7 5c362f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
---
license: other
license_link: https://llama.meta.com/llama3/license/
base_model: meta-llama/Llama-3.3-70B-Instruct
---
This is a quantization of the [Llama-3.3-70B-Instruct](https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct).
The Meta Llama 3.3 is a state-of-the-art multilingual large language model (LLM) with 70 billion parameters, pretrained and instruction-tuned for exceptional performance in generative text-based tasks. Optimized for multilingual dialogue, it supports English and seven additional languages: French, German, Hindi, Italian, Portuguese, Spanish, and Thai, enabling seamless communication across diverse audiences. The model consistently outperforms both open-source and proprietary chat models on key industry benchmarks, delivering superior quality, safety, and helpfulness. Its advanced features and multilingual support position Llama 3.3 as a powerful tool for building innovative AI applications.
## Evaluations
This model provides an accuracy recovery of 99.67%.
| __English__ | __[Llama-3.3-70B-Instruct](https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct)__ | __[Llama-3.3-70B-Instruct-FP8-Dynamic (this)](https://huggingface.co/cortecs/Llama-3.3-70B-Instruct-FP8-Dynamic)__ |
|:--------------|:-----------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------|
| Avg. | 74.1 | 73.75 |
| Arc | 71.7 | 71.6 |
| Hellaswag | 76.5 | 75.9 |
| | | |
| __French__ | __[Llama-3.3-70B-Instruct](https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct)__ | __[Llama-3.3-70B-Instruct-FP8-Dynamic (this)](https://huggingface.co/cortecs/Llama-3.3-70B-Instruct-FP8-Dynamic)__ |
| Avg. | 73.07 | 72.87 |
| Arc | 64.7 | 64.5 |
| Hellaswag | 76.6 | 76.6 |
| MMLU | 77.9 | 77.5 |
| | | |
| __German__ | __[Llama-3.3-70B-Instruct](https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct)__ | __[Llama-3.3-70B-Instruct-FP8-Dynamic (this)](https://huggingface.co/cortecs/Llama-3.3-70B-Instruct-FP8-Dynamic)__ |
| Avg. | 70.07 | 69.83 |
| Arc | 61.8 | 61.2 |
| Hellaswag | 71.2 | 71.1 |
| MMLU | 77.2 | 77.2 |
| | | |
| __Italian__ | __[Llama-3.3-70B-Instruct](https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct)__ | __[Llama-3.3-70B-Instruct-FP8-Dynamic (this)](https://huggingface.co/cortecs/Llama-3.3-70B-Instruct-FP8-Dynamic)__ |
| Avg. | 73.67 | 73.37 |
| Arc | 66.5 | 65.7 |
| Hellaswag | 76.0 | 76.2 |
| MMLU | 78.5 | 78.2 |
| | | |
| __Portuguese__ | __[Llama-3.3-70B-Instruct](https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct)__ | __[Llama-3.3-70B-Instruct-FP8-Dynamic (this)](https://huggingface.co/cortecs/Llama-3.3-70B-Instruct-FP8-Dynamic)__ |
| Avg. | 74.4 | 73.87 |
| Arc | 66.4 | 65.5 |
| Hellaswag | 77.2 | 76.9 |
| MMLU | 79.6 | 79.2 |
| | | |
| __Spanish__ | __[Llama-3.3-70B-Instruct](https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct)__ | __[Llama-3.3-70B-Instruct-FP8-Dynamic (this)](https://huggingface.co/cortecs/Llama-3.3-70B-Instruct-FP8-Dynamic)__ |
| Avg. | 74 | 74.13 |
| Arc | 65.8 | 65.8 |
| Hellaswag | 77.1 | 77.2 |
| MMLU | 79.1 | 79.4 |
We did not check for data contamination.
Evaluation was done using [Eval. Harness](https://github.com/EleutherAI/lm-evaluation-harness) with `limit=1000`.
## Usage
Install **vLLM** and
run the [server](https://docs.vllm.ai/en/latest/serving/openai_compatible_server.html#openai-compatible-server):
```
python -m vllm.entrypoints.openai.api_server --model cortecs/Llama-3.3-70B-Instruct-FP8-Dynamic
```
Access the model:
```
curl http://localhost:8000/v1/completions -H "Content-Type: application/json" -d ' {
"model": "cortecs/Llama-3.3-70B-Instruct-FP8-Dynamic",
"prompt": "San Francisco is a"
} '
```
⚡ This model is optimized to handle heavy workloads providing a total throughput of ️**1485 tokens per second** using one NVIDIA H100 ⚡ |