File size: 6,790 Bytes
70764d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import argparse
import re
import torch
import safetensors.torch


def convert_mm_name_to_compvis(key):
    sd_module_key, _, network_part = re.split(r'(_lora\.)', key)
    sd_module_key = sd_module_key.replace("processor.", "").replace("to_out", "to_out.0")
    sd_module_key = sd_module_key.replace(".", "_")
    return f'{sd_module_key}.lora_{network_part}'

def convert_from_diffuser_state_dict(ad_cn_l):
    unet_conversion_map = [
        # (stable-diffusion, HF Diffusers)
        ("time_embed.0.weight", "time_embedding.linear_1.weight"),
        ("time_embed.0.bias", "time_embedding.linear_1.bias"),
        ("time_embed.2.weight", "time_embedding.linear_2.weight"),
        ("time_embed.2.bias", "time_embedding.linear_2.bias"),
        ("label_emb.0.0.weight", "add_embedding.linear_1.weight"),
        ("label_emb.0.0.bias", "add_embedding.linear_1.bias"),
        ("label_emb.0.2.weight", "add_embedding.linear_2.weight"),
        ("label_emb.0.2.bias", "add_embedding.linear_2.bias"),
        ("input_blocks.0.0.weight", "conv_in.weight"),
        ("input_blocks.0.0.bias", "conv_in.bias"),
        ("middle_block_out.0.weight", "controlnet_mid_block.weight"),
        ("middle_block_out.0.bias", "controlnet_mid_block.bias"),
    ]

    unet_conversion_map_resnet = [
        # (stable-diffusion, HF Diffusers)
        ("in_layers.0", "norm1"),
        ("in_layers.2", "conv1"),
        ("out_layers.0", "norm2"),
        ("out_layers.3", "conv2"),
        ("emb_layers.1", "time_emb_proj"),
        ("skip_connection", "conv_shortcut"),
    ]

    unet_conversion_map_layer = []
    # hardcoded number of downblocks and resnets/attentions...
    # would need smarter logic for other networks.
    for i in range(4):
        # loop over downblocks/upblocks

        for j in range(10):
            # loop over resnets/attentions for downblocks
            hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}."
            sd_down_res_prefix = f"input_blocks.{3*i + j + 1}.0."
            unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix))

            hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}."
            sd_down_atn_prefix = f"input_blocks.{3 * i + j + 1}.1."
            unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix))

        hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv."
        sd_downsample_prefix = f"input_blocks.{3 * (i + 1)}.0.op."
        unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix))


    hf_mid_atn_prefix = "mid_block.attentions.0."
    sd_mid_atn_prefix = "middle_block.1."
    unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix))

    for j in range(2):
        hf_mid_res_prefix = f"mid_block.resnets.{j}."
        sd_mid_res_prefix = f"middle_block.{2*j}."
        unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix))

    # controlnet specific

    controlnet_cond_embedding_names = ['conv_in'] + [f'blocks.{i}' for i in range(6)] + ['conv_out']
    for i, hf_prefix in enumerate(controlnet_cond_embedding_names):
        hf_prefix = f"controlnet_cond_embedding.{hf_prefix}."
        sd_prefix = f"input_hint_block.{i*2}."
        unet_conversion_map_layer.append((sd_prefix, hf_prefix))

    for i in range(12):
        hf_prefix = f"controlnet_down_blocks.{i}."
        sd_prefix = f"zero_convs.{i}.0."
        unet_conversion_map_layer.append((sd_prefix, hf_prefix))


    def _convert_from_diffuser_state_dict(unet_state_dict):
        mapping = {k: k for k in unet_state_dict.keys()}
        for sd_name, hf_name in unet_conversion_map:
            mapping[hf_name] = sd_name
        for k, v in mapping.items():
            if "resnets" in k:
                for sd_part, hf_part in unet_conversion_map_resnet:
                    v = v.replace(hf_part, sd_part)
                mapping[k] = v
        for k, v in mapping.items():
            for sd_part, hf_part in unet_conversion_map_layer:
                v = v.replace(hf_part, sd_part)
            mapping[k] = v
        new_state_dict = {v: unet_state_dict[k] for k, v in mapping.items() if k in unet_state_dict}
        return new_state_dict

    return _convert_from_diffuser_state_dict(ad_cn_l)


def lora_conversion(file_path, save_path):
    state_dict = safetensors.torch.load_file(file_path) if file_path.endswith(".safetensors") else torch.load(file_path)
    modified_dict = {convert_mm_name_to_compvis(k): v for k, v in state_dict.items()}
    safetensors.torch.save_file(modified_dict, save_path)
    print(f"LoRA conversion completed: {save_path}")


def controlnet_conversion(ad_cn_old, ad_cn_new, normal_cn_path):
    ad_cn = safetensors.torch.load_file(ad_cn_old) if ad_cn_old.endswith(".safetensors") else torch.load(ad_cn_old)
    normal_cn = safetensors.torch.load_file(normal_cn_path)
    ad_cn_l, ad_cn_m = {}, {}
    
    for k in ad_cn.keys():
        if k.startswith("controlnet_cond_embedding"):
            new_key = k.replace("controlnet_cond_embedding.", "input_hint_block.0.")
            ad_cn_m[new_key] = ad_cn[k].to(torch.float16)
        elif not k in normal_cn:
            if "motion_modules" in k:
                ad_cn_m[k] = ad_cn[k].to(torch.float16)
            else:
                raise Exception(f"{k} not in normal_cn")
        else:
            ad_cn_l[k] = ad_cn[k].to(torch.float16)
    
    ad_cn_l = convert_from_diffuser_state_dict(ad_cn_l)
    ad_cn_l.update(ad_cn_m)
    safetensors.torch.save_file(ad_cn_l, ad_cn_new)
    print(f"ControlNet conversion completed: {ad_cn_new}")


def main():
    parser = argparse.ArgumentParser(description="Script to convert LoRA and ControlNet models.")
    subparsers = parser.add_subparsers(dest='command')

    # LoRA conversion parser
    lora_parser = subparsers.add_parser('lora', help='LoRA conversion')
    lora_parser.add_argument('file_path', type=str, help='Path to the old LoRA checkpoint')
    lora_parser.add_argument('save_path', type=str, help='Path to save the new LoRA checkpoint')

    # ControlNet conversion parser
    cn_parser = subparsers.add_parser('controlnet', help='ControlNet conversion')
    cn_parser.add_argument('ad_cn_old', type=str, help='Path to the old sparse ControlNet checkpoint')
    cn_parser.add_argument('ad_cn_new', type=str, help='Path to save the new sparse ControlNet checkpoint')
    cn_parser.add_argument('normal_cn_path', type=str, help='Path to the normal ControlNet model')

    args = parser.parse_args()

    if args.command == 'lora':
        lora_conversion(args.file_path, args.save_path)
    elif args.command == 'controlnet':
        controlnet_conversion(args.ad_cn_old, args.ad_cn_new, args.normal_cn_path)
    else:
        parser.print_help()

if __name__ == "__main__":
    main()