File size: 5,609 Bytes
0c6089d ca1377c 0c6089d 1588b12 0c6089d 1588b12 0c6089d ca1377c 0c6089d ca1377c 0c6089d ca1377c 0c6089d ca1377c 0c6089d ca1377c 0c6089d ca1377c 0c6089d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
#!/usr/bin/env python3
from datasets import load_dataset, load_metric, Audio, Dataset
from transformers import pipeline, AutoFeatureExtractor, AutoTokenizer, Wav2Vec2ForCTC
import os
import re
import argparse
import unicodedata
from typing import Dict
def log_results(result: Dataset, args: Dict[str, str]):
""" DO NOT CHANGE. This function computes and logs the result metrics. """
log_outputs = args.log_outputs
dataset_id = "_".join(args.dataset.split("/") + [args.config, args.split])
# load metric
wer = load_metric("wer")
cer = load_metric("cer")
# compute metrics
wer_result = wer.compute(references=result["target"], predictions=result["prediction"])
cer_result = cer.compute(references=result["target"], predictions=result["prediction"])
# print & log results
result_str = (
f"WER: {wer_result}\n"
f"CER: {cer_result}"
)
print(result_str)
with open(f"{dataset_id}_eval_results.txt", "w") as f:
f.write(result_str)
# log all results in text file. Possibly interesting for analysis
if log_outputs is not None:
pred_file = f"log_{dataset_id}_predictions.txt"
target_file = f"log_{dataset_id}_targets.txt"
with open(pred_file, "w") as p, open(target_file, "w") as t:
# mapping function to write output
def write_to_file(batch, i):
p.write(f"{i}" + "\n")
p.write(batch["prediction"] + "\n")
t.write(f"{i}" + "\n")
t.write(batch["target"] + "\n")
result.map(write_to_file, with_indices=True)
def normalize_text(text: str) -> str:
""" DO ADAPT FOR YOUR USE CASE. this function normalizes the target text. """
CHARS = {
'ü': 'ue',
'ö': 'oe',
'ï': 'i',
'ë': 'e',
'ä': 'ae',
'ã': 'a',
'à': 'á',
'ø': 'o',
'è': 'é',
'ê': 'é',
'å': 'ó',
'î': 'i',
'ñ': 'ň',
'ç': 's',
'ľ': 'l',
'ż': 'ž',
'ł': 'w',
'ć': 'č',
'þ': 't',
'ß': 'ss',
'ę': 'en',
'ą': 'an',
'æ': 'ae',
}
def replace_chars(sentence):
result = ''
for ch in sentence:
new = CHARS[ch] if ch in CHARS else ch
result += new
return result
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\/\"\“\„\%\”\�\–\'\`\«\»\—\’\…]'
text = text.lower()
# normalize non-standard (stylized) unicode characters
text = unicodedata.normalize('NFKC', text)
# remove punctuation
text = re.sub(chars_to_ignore_regex, "", text)
text = replace_chars(text)
# Let's also make sure we split on all kinds of newlines, spaces, etc...
text = " ".join(text.split())
return text
def main(args):
# load dataset
dataset = load_dataset(args.dataset, args.config, split=args.split, use_auth_token=True)
# for testing: only process the first two examples as a test
if args.limit:
dataset = dataset.select(range(limit))
feature_extractor = AutoFeatureExtractor.from_pretrained(args.model_id)
# load processor
sampling_rate = feature_extractor.sampling_rate
# resample audio
dataset = dataset.cast_column("audio", Audio(sampling_rate=sampling_rate))
asr = None
if os.path.exists(args.model_id):
model = Wav2Vec2ForCTC.from_pretrained(args.model_id)
tokenizer = AutoTokenizer.from_pretrained(args.model_id)
# load eval pipeline
asr = pipeline("automatic-speech-recognition", model=model, tokenizer=tokenizer, feature_extractor=feature_extractor)
else:
asr = pipeline("automatic-speech-recognition", model=args.model_id)
# map function to decode audio
def map_to_pred(batch):
prediction = asr(batch["audio"]["array"], chunk_length_s=args.chunk_length_s, stride_length_s=args.stride_length_s)
batch["prediction"] = prediction["text"]
batch["target"] = normalize_text(batch["sentence"])
return batch
# run inference on all examples
result = dataset.map(map_to_pred, remove_columns=dataset.column_names)
# compute and log_results
# do not change function below
log_results(result, args)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers"
)
parser.add_argument(
"--dataset", type=str, required=True, help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets"
)
parser.add_argument(
"--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice"
)
parser.add_argument(
"--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`"
)
parser.add_argument(
"--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to None. For long audio files a good value would be 5.0 seconds."
)
parser.add_argument(
"--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to None. For long audio files a good value would be 1.0 seconds."
)
parser.add_argument(
"--log_outputs", action='store_true', help="If defined, write outputs to log file for analysis."
)
parser.add_argument(
"--limit", type=int, help="Not required. If greater than zero, select a subset of this size from the dataset.", default=0
)
args = parser.parse_args()
main(args)
|