File size: 5,609 Bytes
0c6089d
 
ca1377c
 
0c6089d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1588b12
0c6089d
 
 
 
 
 
1588b12
0c6089d
 
 
 
 
 
 
 
 
 
 
 
ca1377c
 
0c6089d
 
ca1377c
0c6089d
 
 
 
ca1377c
 
 
 
 
 
 
0c6089d
ca1377c
 
0c6089d
ca1377c
 
 
0c6089d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca1377c
 
 
0c6089d
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
#!/usr/bin/env python3
from datasets import load_dataset, load_metric, Audio, Dataset
from transformers import pipeline, AutoFeatureExtractor, AutoTokenizer, Wav2Vec2ForCTC
import os
import re
import argparse
import unicodedata
from typing import Dict


def log_results(result: Dataset, args: Dict[str, str]):
    """ DO NOT CHANGE. This function computes and logs the result metrics. """

    log_outputs = args.log_outputs
    dataset_id = "_".join(args.dataset.split("/") + [args.config, args.split])

    # load metric
    wer = load_metric("wer")
    cer = load_metric("cer")

    # compute metrics
    wer_result = wer.compute(references=result["target"], predictions=result["prediction"])
    cer_result = cer.compute(references=result["target"], predictions=result["prediction"])

    # print & log results
    result_str = (
        f"WER: {wer_result}\n"
        f"CER: {cer_result}"
    )
    print(result_str)

    with open(f"{dataset_id}_eval_results.txt", "w") as f:
        f.write(result_str)

    # log all results in text file. Possibly interesting for analysis
    if log_outputs is not None:
        pred_file = f"log_{dataset_id}_predictions.txt"
        target_file = f"log_{dataset_id}_targets.txt"

        with open(pred_file, "w") as p, open(target_file, "w") as t:

            # mapping function to write output
            def write_to_file(batch, i):
                p.write(f"{i}" + "\n")
                p.write(batch["prediction"] + "\n")
                t.write(f"{i}" + "\n")
                t.write(batch["target"] + "\n")

            result.map(write_to_file, with_indices=True)


def normalize_text(text: str) -> str:
    """ DO ADAPT FOR YOUR USE CASE. this function normalizes the target text. """


    CHARS = {
    'ü': 'ue',
    'ö': 'oe',
    'ï': 'i',
    'ë': 'e',
    'ä': 'ae',
    'ã': 'a',
    'à': 'á',
    'ø': 'o',
    'è': 'é',
    'ê': 'é',
    'å': 'ó',
    'î': 'i',
    'ñ': 'ň',
    'ç': 's',
    'ľ': 'l',
    'ż': 'ž',
    'ł': 'w',
    'ć': 'č',
    'þ': 't',
    'ß': 'ss',
    'ę': 'en',
    'ą': 'an',
    'æ': 'ae',
  }

    def replace_chars(sentence):
      result = ''
      for ch in sentence:
        new = CHARS[ch] if ch in CHARS else ch
        result += new

      return result
    
    chars_to_ignore_regex = '[\,\?\.\!\-\;\:\/\"\“\„\%\”\�\–\'\`\«\»\—\’\…]'

    text = text.lower()
    # normalize non-standard (stylized) unicode characters
    text = unicodedata.normalize('NFKC', text)
    # remove punctuation
    text = re.sub(chars_to_ignore_regex, "", text)
    text = replace_chars(text)

    # Let's also make sure we split on all kinds of newlines, spaces, etc...
    text = " ".join(text.split())

    return text


def main(args):
    # load dataset
    dataset = load_dataset(args.dataset, args.config, split=args.split, use_auth_token=True)

    # for testing: only process the first two examples as a test
    if args.limit:
        dataset = dataset.select(range(limit))

    feature_extractor = AutoFeatureExtractor.from_pretrained(args.model_id)
    # load processor
    sampling_rate = feature_extractor.sampling_rate

    # resample audio
    dataset = dataset.cast_column("audio", Audio(sampling_rate=sampling_rate))
    
    asr = None
    
    if os.path.exists(args.model_id):
        model = Wav2Vec2ForCTC.from_pretrained(args.model_id)
        tokenizer = AutoTokenizer.from_pretrained(args.model_id)
        

        # load eval pipeline
        asr = pipeline("automatic-speech-recognition", model=model, tokenizer=tokenizer, feature_extractor=feature_extractor)

    else:
        asr = pipeline("automatic-speech-recognition", model=args.model_id)
        
    # map function to decode audio
    def map_to_pred(batch):
        prediction = asr(batch["audio"]["array"], chunk_length_s=args.chunk_length_s, stride_length_s=args.stride_length_s)

        batch["prediction"] = prediction["text"]
        batch["target"] = normalize_text(batch["sentence"])
        return batch

    # run inference on all examples
    result = dataset.map(map_to_pred, remove_columns=dataset.column_names)

    # compute and log_results
    # do not change function below
    log_results(result, args)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()

    parser.add_argument(
        "--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers"
    )
    parser.add_argument(
        "--dataset", type=str, required=True, help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets"
    )
    parser.add_argument(
        "--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'`  for Common Voice"
    )
    parser.add_argument(
        "--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`"
    )
    parser.add_argument(
        "--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to None. For long audio files a good value would be 5.0 seconds."
    )
    parser.add_argument(
        "--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to None. For long audio files a good value would be 1.0 seconds."
    )
    parser.add_argument(
        "--log_outputs", action='store_true', help="If defined, write outputs to log file for analysis."
    )
    parser.add_argument(
        "--limit", type=int, help="Not required. If greater than zero, select a subset of this size from the dataset.", default=0
    )
    args = parser.parse_args()

    main(args)