metadata
language:
- ru
- en
tags:
- russian
license: mit
widget:
- text: fill | Почему они не ___ на меня?
This is a smaller version of the google/mt5-base with only some Rusian and English embeddings left.
More details are given in a Russian post: https://habr.com/ru/post/581932/
The model has been fine-tuned for several tasks with sentences or short paragraphs:
- translation (
translate ru-en
andtranslate en-ru
) - Paraphrasing (
paraphrase
) - Filling gaps in a text (
fill
). The gaps can be denoted as___
or_3_
, where3
is the approximate number of words that should be inserted. - Restoring the text from a noisy bag of words (
assemble
) - Simplification of texts (
simplify
) - Dialogue response generation (
reply
based on fiction andanswer
based on online forums) - Open-book question answering (
comprehend
) - Asking questions about a text (
ask
) - News title generation (
headline
)
For each task, the task name is joined with the input text by the |
separator.
The model can be run with the following code:
# !pip install transformers sentencepiece
import torch
from transformers import T5ForConditionalGeneration, T5Tokenizer
tokenizer = T5Tokenizer.from_pretrained("cointegrated/rut5-base-multitask")
model = T5ForConditionalGeneration.from_pretrained("cointegrated/rut5-base-multitask")
def generate(text, **kwargs):
inputs = tokenizer(text, return_tensors='pt')
with torch.no_grad():
hypotheses = model.generate(**inputs, num_beams=5, **kwargs)
return tokenizer.decode(hypotheses[0], skip_special_tokens=True)
The model can be applied to each of the pretraining tasks:
print(generate('translate ru-en | Каждый охотник желает знать, где сидит фазан.'))
# Each hunter wants to know, where he is.
print(generate('paraphrase | Каждый охотник желает знать, где сидит фазан.',
encoder_no_repeat_ngram_size=1, repetition_penalty=0.5, no_repeat_ngram_size=1))
# В любом случае каждый рыбак мечтает познакомиться со своей фермой
print(generate('fill | Каждый охотник _3_, где сидит фазан.'))
# смотрит на озеро
print(generate('assemble | охотник каждый знать фазан сидит'))
# Каждый охотник знает, что фазан сидит.
print(generate('simplify | Местным продуктом-специалитетом с защищённым географическим наименованием по происхождению считается люнебургский степной барашек.', max_length=32))
# Местным продуктом-специалитетом считается люнебургский степной барашек.
print(generate('reply | Помогите мне закадрить девушку'))
# Что я хочу?
print(generate('answer | Помогите мне закадрить девушку'))
# я хочу познакомиться с девушкой!!!!!!!!
print(generate("comprehend | На фоне земельного конфликта между владельцами овец и ранчеро разворачивается история любви овцевода Моргана Лейна, "
"прибывшего в США из Австралии, и Марии Синглетон, владелицы богатого скотоводческого ранчо. Вопрос: откуда приехал Морган?"))
# из Австралии
print(generate("ask | На фоне земельного конфликта между владельцами овец и ранчеро разворачивается история любви овцевода Моргана Лейна, "
"прибывшего в США из Австралии, и Марии Синглетон, владелицы богатого скотоводческого ранчо.", max_length=32))
# Что разворачивается на фоне земельного конфликта между владельцами овец и ранчеро?
print(generate("headline | На фоне земельного конфликта между владельцами овец и ранчеро разворачивается история любви овцевода Моргана Лейна, "
"прибывшего в США из Австралии, и Марии Синглетон, владелицы богатого скотоводческого ранчо.", max_length=32))
# На фоне земельного конфликта разворачивается история любви овцевода Моргана Лейна и Марии Синглетон
However, it is strongly recommended that you fine tune the model for your own task.