|
import streamlit as st |
|
import pickle |
|
import pandas as pd |
|
import requests |
|
|
|
|
|
def fetch_poster(movie_id): |
|
url = "https://api.themoviedb.org/3/movie/{}?api_key=fe34a557846e9a676a98fd362f059b28&language=en-US".format( |
|
movie_id) |
|
response = requests.get(url) |
|
data = response.json() |
|
poster_path = data['poster_path'] |
|
full_path = "https://image.tmdb.org/t/p/w500/" + poster_path |
|
return full_path |
|
|
|
|
|
def recommend(movie): |
|
movie_index = movies[movies['title'] == movie].index[0] |
|
distances = similarity[movie_index] |
|
movies_list = sorted(list(enumerate(distances)), reverse=True, key=lambda x: x[1])[1:6] |
|
|
|
recommended_movies = [] |
|
recommended_movies_posters = [] |
|
for i in movies_list: |
|
movie_id = movies.iloc[i[0]].movie_id |
|
|
|
recommended_movies.append(movies.iloc[i[0]].title) |
|
|
|
recommended_movies_posters.append(fetch_poster(movie_id)) |
|
return recommended_movies,recommended_movies_posters |
|
|
|
|
|
st.title('Movie Recommender System') |
|
st.text('π¨π»βπ» by Vividh Pandey') |
|
movies_dict = pickle.load(open('movie_dict.pkl', 'rb')) |
|
movies = pd.DataFrame(movies_dict) |
|
|
|
similarity = pickle.load(open('similarity.pkl', 'rb')) |
|
|
|
movie_list = movies['title'].values |
|
selected_movie_name = st.selectbox( |
|
"Type or select a movie from the dropdown", |
|
movies['title'].values |
|
) |
|
|
|
if st.button('Show Recommendation'): |
|
names,posters = recommend(selected_movie_name) |
|
col1, col2, col3, col4, col5 = st.columns(5) |
|
with col1: |
|
st.text(names[0]) |
|
st.image(posters[0]) |
|
with col2: |
|
st.text(names[1]) |
|
st.image(posters[1]) |
|
with col3: |
|
st.text(names[2]) |
|
st.image(posters[2]) |
|
with col4: |
|
st.text(names[3]) |
|
st.image(posters[3]) |
|
with col5: |
|
st.text(names[4]) |
|
st.image(posters[4]) |
|
|