import streamlit as st import pickle import pandas as pd import requests def fetch_poster(movie_id): url = "https://api.themoviedb.org/3/movie/{}?api_key=fe34a557846e9a676a98fd362f059b28&language=en-US".format( movie_id) response = requests.get(url) data = response.json() poster_path = data['poster_path'] full_path = "https://image.tmdb.org/t/p/w500/" + poster_path return full_path def recommend(movie): movie_index = movies[movies['title'] == movie].index[0] distances = similarity[movie_index] movies_list = sorted(list(enumerate(distances)), reverse=True, key=lambda x: x[1])[1:6] recommended_movies = [] recommended_movies_posters = [] for i in movies_list: movie_id = movies.iloc[i[0]].movie_id recommended_movies.append(movies.iloc[i[0]].title) # using movie_id fetch poster from API recommended_movies_posters.append(fetch_poster(movie_id)) return recommended_movies,recommended_movies_posters st.title('Movie Recommender System') st.text('👨🏻‍💻 by Vividh Pandey') movies_dict = pickle.load(open('movie_dict.pkl', 'rb')) movies = pd.DataFrame(movies_dict) similarity = pickle.load(open('similarity.pkl', 'rb')) movie_list = movies['title'].values selected_movie_name = st.selectbox( "Type or select a movie from the dropdown", movies['title'].values ) if st.button('Show Recommendation'): names,posters = recommend(selected_movie_name) col1, col2, col3, col4, col5 = st.columns(5) with col1: st.text(names[0]) st.image(posters[0]) with col2: st.text(names[1]) st.image(posters[1]) with col3: st.text(names[2]) st.image(posters[2]) with col4: st.text(names[3]) st.image(posters[3]) with col5: st.text(names[4]) st.image(posters[4])