File size: 1,870 Bytes
10ade8d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
import streamlit as st
import pickle
import pandas as pd
import requests
def fetch_poster(movie_id):
url = "https://api.themoviedb.org/3/movie/{}?api_key=fe34a557846e9a676a98fd362f059b28&language=en-US".format(
movie_id)
response = requests.get(url)
data = response.json()
poster_path = data['poster_path']
full_path = "https://image.tmdb.org/t/p/w500/" + poster_path
return full_path
def recommend(movie):
movie_index = movies[movies['title'] == movie].index[0]
distances = similarity[movie_index]
movies_list = sorted(list(enumerate(distances)), reverse=True, key=lambda x: x[1])[1:6]
recommended_movies = []
recommended_movies_posters = []
for i in movies_list:
movie_id = movies.iloc[i[0]].movie_id
recommended_movies.append(movies.iloc[i[0]].title)
# using movie_id fetch poster from API
recommended_movies_posters.append(fetch_poster(movie_id))
return recommended_movies,recommended_movies_posters
st.title('Movie Recommender System')
st.text('👨🏻💻 by Vividh Pandey')
movies_dict = pickle.load(open('movie_dict.pkl', 'rb'))
movies = pd.DataFrame(movies_dict)
similarity = pickle.load(open('similarity.pkl', 'rb'))
movie_list = movies['title'].values
selected_movie_name = st.selectbox(
"Type or select a movie from the dropdown",
movies['title'].values
)
if st.button('Show Recommendation'):
names,posters = recommend(selected_movie_name)
col1, col2, col3, col4, col5 = st.columns(5)
with col1:
st.text(names[0])
st.image(posters[0])
with col2:
st.text(names[1])
st.image(posters[1])
with col3:
st.text(names[2])
st.image(posters[2])
with col4:
st.text(names[3])
st.image(posters[3])
with col5:
st.text(names[4])
st.image(posters[4])
|