|
--- |
|
license: apache-2.0 |
|
base_model: distilbert-base-uncased |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: piidetection |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# piidetection |
|
|
|
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0010 |
|
- Precision: 0.7422 |
|
- Recall: 0.8051 |
|
- F1: 0.7724 |
|
- Accuracy: 0.9998 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 1.0 | 171 | 0.0044 | 0.0 | 0.0 | 0.0 | 0.9993 | |
|
| No log | 2.0 | 342 | 0.0018 | 0.4084 | 0.3305 | 0.3653 | 0.9996 | |
|
| 0.0316 | 3.0 | 513 | 0.0013 | 0.7661 | 0.5551 | 0.6437 | 0.9997 | |
|
| 0.0316 | 4.0 | 684 | 0.0010 | 0.7258 | 0.7627 | 0.7438 | 0.9998 | |
|
| 0.0316 | 5.0 | 855 | 0.0010 | 0.7991 | 0.7585 | 0.7783 | 0.9998 | |
|
| 0.0008 | 6.0 | 1026 | 0.0009 | 0.7317 | 0.7627 | 0.7469 | 0.9998 | |
|
| 0.0008 | 7.0 | 1197 | 0.0010 | 0.7449 | 0.7669 | 0.7557 | 0.9998 | |
|
| 0.0008 | 8.0 | 1368 | 0.0011 | 0.7965 | 0.7627 | 0.7792 | 0.9998 | |
|
| 0.0004 | 9.0 | 1539 | 0.0010 | 0.7520 | 0.7839 | 0.7676 | 0.9998 | |
|
| 0.0004 | 10.0 | 1710 | 0.0010 | 0.7422 | 0.8051 | 0.7724 | 0.9998 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.37.0 |
|
- Pytorch 2.1.2 |
|
- Datasets 2.1.0 |
|
- Tokenizers 0.15.1 |
|
|