metadata
base_model: google/gemma-7b
library_name: peft
license: gemma
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: outputs
results: []
language:
- en
pipeline_tag: text-generation
outputs
This model is a fine-tuned version of google/gemma-7b on the None dataset.
Model description
Trained by Sociology Text
Example
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, GemmaTokenizer
# download the file or use the HF_Token to get the model
model_id = file
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=bnb_config, device_map={"":0})
text = "sociological imagination is "
device = "cuda:0"
inputs = tokenizer(text, return_tensors="pt").to(device)
outputs = model.generate(**inputs, max_new_tokens=60)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
# Output: sociological imagination is <strong>the ability to see the relationship between personal troubles and public issues
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2
- training_steps: 10
- mixed_precision_training: Native AMP
Training results
Framework versions
- PEFT 0.8.2
- Transformers 4.38.1
- Pytorch 2.3.1+cu121
- Datasets 2.17.0
- Tokenizers 0.15.2