Cyrile commited on
Commit
7efb8bc
1 Parent(s): c3dc18b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +32 -0
README.md CHANGED
@@ -19,6 +19,13 @@ This modelization is close to [tblard/tf-allocine](https://huggingface.co/tblard
19
 
20
  Dataset
21
  -------
 
 
 
 
 
 
 
22
 
23
  Evaluation results
24
  ------------------
@@ -26,5 +33,30 @@ Evaluation results
26
  Benchmark
27
  ---------
28
 
 
 
29
  How to use DistilCamemBERT-Sentiment
30
  ------------------------------------
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
 
20
  Dataset
21
  -------
22
+
23
+ The dataset is composed of XXX,XXX reviews for training and X,XXX review for the test issue of Amazon, and respectively XXX,XXX and X,XXX critics issue of Allocine website. The dataset is labeled into 5 categories:
24
+ * 1 star: represent very bad appreciation,
25
+ * 2 stars: bad appreciation,
26
+ * 3 stars: neutral appreciation,
27
+ * 4 stars: good appreciation,
28
+ * 5 stars: very good appreciation.
29
 
30
  Evaluation results
31
  ------------------
 
33
  Benchmark
34
  ---------
35
 
36
+ This model is compared to 3 reference models (see below). As each model does not have the same definition of targets, we detail the performance measure used for each of them. For the mean inference time measure, an AMD Ryzen 5 4500U @ 2.3GHz with 6 cores was used:
37
+
38
  How to use DistilCamemBERT-Sentiment
39
  ------------------------------------
40
+
41
+ ```python
42
+ from transformers import pipeline
43
+
44
+ analyzer = pipeline(
45
+ task='text-classification',
46
+ model="cmarkea/distilcamembert-base-sentiment",
47
+ tokenizer="cmarkea/distilcamembert-base-sentiment"
48
+ )
49
+ result = analyzer("J'aime marché dans la nature même si ça me donne mal au pied.")
50
+
51
+ result
52
+ [{'label': '1 star',
53
+ 'score': 0.07675889134407043},
54
+ {'label': '2 stars',
55
+ 'score': 0.19822990894317627},
56
+ {'label': '3 stars',
57
+ 'score': 0.38655608892440796},
58
+ {'label': '4 stars',
59
+ 'score': 0.24029818177223206},
60
+ {'label': '5 stars',
61
+ 'score': 0.09815695881843567}]
62
+ ```