File size: 2,070 Bytes
ea31ad4
 
16ad9d0
 
 
 
 
 
14990b2
 
d770fea
 
 
 
 
 
14990b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
---
license: bigscience-bloom-rail-1.0
datasets:
- xnli
language:
- fr
- en
pipeline_tag: zero-shot-classification
---

## Presentation
We introduce the Bloomz-560m-NLI model, fine-tuned on the [Bloomz-560m-chat-dpo](https://huggingface.co/cmarkea/bloomz-560m-dpo-chat) foundation model. This model is trained on a Natural Language Inference (NLI) task in a language-agnostic manner. The NLI task involves determining the semantic relationship between a hypothesis and a set of premises, often expressed as pairs of sentences. It should be noted that hypotheses and premises are randomly chosen between English and French, with each language combination representing a probability of 25%.

## Zero-shot Classification
The primary appeal of training such models lies in their zero-shot classification performance. This means the model is capable of classifying any text with any label without specific training. What sets the Bloomz-560m-NLI LLMs apart in this realm is their ability to model and extract information from significantly more complex and lengthy test structures compared to models like BERT, RoBERTa, or CamemBERT.

```python
from transformers import pipeline

classifier = pipeline(
    task='zero-shot-classification',
    model="cmarkea/bloomz-3b-nli"
)
result = classifier (
    sequences="Le style très cinéphile de Quentin Tarantino "
    "se reconnaît entre autres par sa narration postmoderne "
    "et non linéaire, ses dialogues travaillés souvent "
    "émaillés de références à la culture populaire, et ses "
    "scènes hautement esthétiques mais d'une violence "
    "extrême, inspirées de films d'exploitation, d'arts "
    "martiaux ou de western spaghetti.",
    candidate_labels="cinéma, technologie, littérature, politique",
    hypothesis_template="Ce texte parle de {}."
)

result
{"labels": ["cinéma",
            "littérature",
            "technologie",
            "politique"],
 "scores": [0.6797838807106018,
            0.1440986692905426,
            0.09773541986942291,
            0.07838203758001328]}
```