metadata
license: cc-by-nc-4.0
Now this model is improved by DPO cloudyu/Venus_19B_DPO_500
Mixtral MOE 2x10.7B
One of Best MoE Model reviewd by reddit community
MoE of the following models :
Local Test
hf (pretrained=cloudyu/Mixtral_11Bx2_MoE_19B), gen_kwargs: (None), limit: None, num_fewshot: 10, batch_size: auto (32)
Tasks Version Filter n-shot Metric Value Stderr hellaswag Yaml none 10 acc 0.7142 ± 0.0045 none 10 acc_norm 0.8819 ± 0.0032
gpu code example
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import math
## v2 models
model_path = "cloudyu/Mixtral_11Bx2_MoE_19B"
tokenizer = AutoTokenizer.from_pretrained(model_path, use_default_system_prompt=False)
model = AutoModelForCausalLM.from_pretrained(
model_path, torch_dtype=torch.float32, device_map='auto',local_files_only=False, load_in_4bit=True
)
print(model)
prompt = input("please input prompt:")
while len(prompt) > 0:
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to("cuda")
generation_output = model.generate(
input_ids=input_ids, max_new_tokens=500,repetition_penalty=1.2
)
print(tokenizer.decode(generation_output[0]))
prompt = input("please input prompt:")
CPU example
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import math
## v2 models
model_path = "cloudyu/Mixtral_11Bx2_MoE_19B"
tokenizer = AutoTokenizer.from_pretrained(model_path, use_default_system_prompt=False)
model = AutoModelForCausalLM.from_pretrained(
model_path, torch_dtype=torch.float32, device_map='cpu',local_files_only=False
)
print(model)
prompt = input("please input prompt:")
while len(prompt) > 0:
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
generation_output = model.generate(
input_ids=input_ids, max_new_tokens=500,repetition_penalty=1.2
)
print(tokenizer.decode(generation_output[0]))
prompt = input("please input prompt:")