metadata
language:
- en
- pt
tags:
- bart
- seq2seq
- summarization
license: apache-2.0
datasets:
- samsum
widget:
- text: |
Bruno: Ei, você tem o número da Betty?
Kleber: Desculpe, não encontrei.
Bruno: Pesquise.
Kleber: De acordo com minha pesquisa o número é 35 9 9898-6142
Bruno: Obrigado.
model-index:
- name: bart-large-xsum-samsum
results:
- task:
name: Abstractive Text Summarization
type: abstractive-text-summarization
dataset:
name: >-
SAMSum Corpus: A Human-annotated Dialogue Dataset for Abstractive
Summarization
type: samsum
metrics:
- name: Validation ROUGE-1
type: rouge-1
value: 54.3921
- name: Validation ROUGE-2
type: rouge-2
value: 29.8078
- name: Validation ROUGE-L
type: rouge-l
value: 45.1543
- name: Test ROUGE-1
type: rouge-1
value: 53.3059
- name: Test ROUGE-2
type: rouge-2
value: 28.355
- name: Test ROUGE-L
type: rouge-l
value: 44.0953
metrics:
- accuracy
bart-large-xsum-samsum
This model was obtained by fine-tuning facebook/bart-large-xsum
on Samsum dataset.
Usage
from transformers import pipeline
summarizer = pipeline("summarization", model="lidiya/bart-large-xsum-samsum")
conversation = '''Hannah: Hey, do you have Betty's number?
Amanda: Lemme check
Amanda: Sorry, can't find it.
Amanda: Ask Larry
Amanda: He called her last time we were at the park together
Hannah: I don't know him well
Amanda: Don't be shy, he's very nice
Hannah: If you say so..
Hannah: I'd rather you texted him
Amanda: Just text him 🙂
Hannah: Urgh.. Alright
Hannah: Bye
Amanda: Bye bye
'''
summarizer(conversation)
Training procedure
- Colab notebook: https://colab.research.google.com/drive/1dul0Sg-TTMy9xZCJzmDRajXbyzDwtYx6?usp=sharing
Results
key | value |
---|---|
eval_rouge1 | 54.3921 |
eval_rouge2 | 29.8078 |
eval_rougeL | 45.1543 |
eval_rougeLsum | 49.942 |
test_rouge1 | 53.3059 |
test_rouge2 | 28.355 |
test_rougeL | 44.0953 |
test_rougeLsum | 48.9246 |