mariagrandury commited on
Commit
fb75879
1 Parent(s): f4215fa

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +165 -20
README.md CHANGED
@@ -1,53 +1,198 @@
1
  ---
2
  model-index:
3
- - name: lince-zero
4
- results: []
5
  license: apache-2.0
6
  language:
7
- - es
8
- thumbnail: https://huggingface.co/clibrain/lince-zero/resolve/main/lince_logo_1.png
9
  pipeline_tag: text-generation
 
10
  ---
11
 
12
- # Lince Zero 🐯
 
 
13
 
14
  <div style="text-align:center;width:250px;height:250px;">
15
  <img src="https://huggingface.co/clibrain/lince-zero/resolve/main/LINCE-CLIBRAIN-HD.jpg" alt="lince logo"">
16
  </div>
17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
 
19
- **Lince** is model fine-tuned on a massive and original corpus of Spanish instructions.
20
 
21
- ## Model description 🧠
22
 
23
- TBA
24
 
 
25
 
26
- ## Training and evaluation data 📚
27
 
28
- We created an instruction dataset following the format or popular datasets in the field such as *Alpaca* and *Dolly* and augmented it to reach **80k** samples.
29
 
 
30
 
31
- ### Training hyperparameters ⚙
32
 
33
- TBA
34
 
35
- ### Training results 🗒️
36
 
37
- TBA
38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39
 
40
- ### Example of usage 👩‍💻
41
  ```py
42
  import torch
43
  from transformers import AutoModelForCausalLM, AutoTokenizer, AutoTokenizer
44
 
45
  model_id = "clibrain/lince-zero"
46
 
47
- tokenizer = AutoTokenizer.from_pretrained(model_id)
48
-
49
  model = AutoModelForCausalLM.from_pretrained(model_id).to("cuda")
50
-
51
 
52
  def create_instruction(instruction, input_data=None, context=None):
53
  sections = {
@@ -79,7 +224,7 @@ def generate(
79
  num_beams=4,
80
  **kwargs
81
  ):
82
-
83
  prompt = create_instruction(instruction, input, context)
84
  print(prompt)
85
  inputs = tokenizer(prompt, return_tensors="pt")
@@ -108,4 +253,4 @@ def generate(
108
 
109
  instruction = "Dame una lista de lugares a visitar en España."
110
  print(generate(instruction))
111
- ```
 
1
  ---
2
  model-index:
3
+ - name: lince-zero
4
+ results: []
5
  license: apache-2.0
6
  language:
7
+ - es
8
+ thumbnail: https://huggingface.co/clibrain/lince-zero/resolve/main/LINCE-CLIBRAIN-HD.jpg
9
  pipeline_tag: text-generation
10
+ library_name: transformers
11
  ---
12
 
13
+ **LINCE-ZERO** (Llm for Instructions from Natural Corpus en Español) is a state-of-the-art Spanish instruction-tuned large language model. Developed by [Clibrain](https://www.clibrain.com/), it is a causal decoder-only model with 7B parameters. LINCE-ZERO is based on [Falcon-7B](https://huggingface.co/tiiuae/falcon-7b) and has been fine-tuned using an 80k examples proprietary dataset inspired in famous instruction datasets such as Alpaca and Dolly.
14
+
15
+ The model is released under the Apache 2.0 license.
16
 
17
  <div style="text-align:center;width:250px;height:250px;">
18
  <img src="https://huggingface.co/clibrain/lince-zero/resolve/main/LINCE-CLIBRAIN-HD.jpg" alt="lince logo"">
19
  </div>
20
 
21
+ # Table of Contents
22
+
23
+ - [Model Details](#model-details)
24
+ - [Model Description](#model-description)
25
+ - [Uses](#uses)
26
+ - [Direct Use](#direct-use)
27
+ - [Downstream Use](#downstream-use)
28
+ - [Out-of-Scope Use](#out-of-scope-use)
29
+ - [Bias, Risks, and Limitations](#bias-risks-and-limitations)
30
+ - [Recommendations](#recommendations)
31
+ - [Training Details](#training-details)
32
+ - [Training Data](#training-data)
33
+ - [Training Procedure](#training-procedure)
34
+ - [Preprocessing](#preprocessing)
35
+ - [Speeds, Sizes, Times](#speeds-sizes-times)
36
+ - [Evaluation](#evaluation)
37
+ - [Testing Data, Factors & Metrics](#testing-data-factors--metrics)
38
+ - [Testing Data](#testing-data)
39
+ - [Factors](#factors)
40
+ - [Metrics](#metrics)
41
+ - [Results](#results)
42
+ - [Model Examination](#model-examination)
43
+ - [Environmental Impact](#environmental-impact)
44
+ - [Technical Specifications](#technical-specifications)
45
+ - [Model Architecture and Objective](#model-architecture-and-objective)
46
+ - [Compute Infrastructure](#compute-infrastructure)
47
+ - [Hardware](#hardware)
48
+ - [Software](#software)
49
+ - [Citation](#citation)
50
+ - [Contact](#contact)
51
+ - [How to Get Started with the Model](#how-to-get-started-with-the-model)
52
+
53
+ # Model Details
54
+
55
+ ## Model Description
56
+
57
+ LINCE-ZERO (Llm for Instructions from Natural Corpus en Español) is a state-of-the-art Spanish instruction-tuned large language model. Developed by [Clibrain](https://www.clibrain.com/), it is a causal decoder-only model with 7B parameters. LINCE-ZERO is based on [Falcon-7B](https://huggingface.co/tiiuae/falcon-7b) and has been fine-tuned using an 80k examples proprietary dataset.
58
+
59
+ - **Developed by:** [Clibrain](https://www.clibrain.com/)
60
+ - **Model type:** Language model, instruction model, causal decoder-only
61
+ - **Language(s) (NLP):** es
62
+ - **License:** apache-2.0
63
+ - **Parent Model:** [https://huggingface.co/tiiuae/falcon-7b](https://huggingface.co/tiiuae/falcon-7b)
64
+
65
+ ## Model Sources
66
+
67
+ - **Paper**: Coming soon!
68
+ - **Demo**: Coming soon!
69
+
70
+ # Uses
71
+
72
+ ## Direct Use
73
+
74
+ LINCE-ZERO's fine-tuning on an instructions dataset enables it to follow natural language instructions in Spanish. The direct use cases include virtual assistants and content generation.
75
+
76
+ Please note that running inference with LINCE-ZERO efficiently requires a minimum of XGB of memory.
77
+
78
+ ## Downstream Use
79
+
80
+ LINCE-ZERO is an instruct model, it’s primarily intended for direct use and may not be ideal for further fine-tuning. It serves as a general model suitable for a wide range of applications. However, for specific use cases within certain domains, fine-tuning with domain-specific data may improve LINCE-ZERO's performance.
81
+
82
+ ## Out-of-Scope Use
83
+
84
+ LINCE-ZERO should not be used for production purposes without conducting a thorough assessment of risks and mitigation strategies.
85
+
86
+ # Bias, Risks, and Limitations
87
+
88
+ LINCE-ZERO has limitations associated with both the underlying language model and the instruction tuning data. It is crucial to acknowledge that predictions generated by the model may inadvertently exhibit common deficiencies of language models, including hallucination, toxicity, and perpetuate harmful stereotypes across protected classes, identity characteristics, and sensitive, social, and occupational groups.
89
+
90
+ ## Recommendations
91
+
92
+ Please, when utilizing LINCE-ZERO, exercise caution and critically assess the output to mitigate the potential impact of biased or inaccurate information.
93
+
94
+ If considering LINCE-ZERO for production use, it is crucial to thoroughly evaluate the associated risks and adopt suitable precautions. Conduct a comprehensive assessment to address any potential biases and ensure compliance with legal and ethical standards.
95
+
96
+ # Training Details
97
+
98
+ ## Training Data
99
+
100
+ LINCE-ZERO is based on **[Falcon-7B](https://huggingface.co/tiiuae/falcon-7b)** and has been fine-tuned using an 80k examples proprietary dataset inspired in famous instruction datasets such as Alpaca and Dolly.
101
+
102
+ ## Training Procedure
103
+
104
+ For detailed information about the model architecture and compute infrastructure, please refer to the Technical Specifications section.
105
+
106
+ ### Preprocessing
107
 
108
+ The training data was tokenized using LINCE-ZERO’s tokenizer, which is based on the Falcon-**[7B](https://huggingface.co/tiiuae/falcon-7b)**/**[40B](https://huggingface.co/tiiuae/falcon-40b)** tokenizer.
109
 
110
+ ### Training Hyperparameters
111
 
112
+ More information needed
113
 
114
+ ### Speeds, Sizes, Times
115
 
116
+ More information needed (throughput, start/end time, checkpoint size if relevant, etc.)
117
 
118
+ # Evaluation
119
 
120
+ ## Testing Data, Factors & Metrics
121
 
122
+ ### Testing Data
123
 
124
+ More information needed
125
 
126
+ ### Metrics
127
 
128
+ Since LINCE-ZERO is an instruction model, the metrics used to evaluate it are:
129
 
130
+ - X: <value>
131
+
132
+ ### Results
133
+
134
+ Paper coming soon. Meanwhile, check the [OpenLLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
135
+
136
+ # Technical Specifications
137
+
138
+ ## Model Architecture and Objective
139
+
140
+ LINCE-ZERO is a causal decoder-only model trained on a causal language modeling task. Its objective is to predict the next token in a sequence based on the context provided.
141
+
142
+ The architecture of LINCE-ZERO is based on Falcon-7B, which itself is adapted from the GPT-3 paper (Brown et al., 2020) with the following modifications:
143
+
144
+ - Positional embeddings: rotary (Su et al., 2021);
145
+ - Attention: multiquery (Shazeer et al., 2019) and FlashAttention (Dao et al., 2022);
146
+ - Decoder-block: parallel attention/MLP with a single-layer norm.
147
+
148
+ ## Compute Infrastructure
149
+
150
+ ### Hardware
151
+
152
+ LINCE-ZERO was trained on AWS SageMaker, on ... GPUs in ... instances.
153
+
154
+ ### Software
155
+
156
+ More information needed
157
+
158
+ # Environmental Impact
159
+
160
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
161
+
162
+ - **Hardware Type:** More information needed
163
+ - **Hours used:** More information needed
164
+ - **Cloud Provider:** More information needed
165
+ - **Compute Region:** More information needed
166
+ - **Carbon Emitted:** More information needed
167
+
168
+ # Citation
169
+
170
+ There is a paper coming soon! Meanwhile, when using LINCE-ZERO please use the following information to cite:
171
+
172
+ ```markdown
173
+ @article{lince-zero,
174
+ title={{LINCE}: Llm for Instructions from Natural Corpus en Español},
175
+ author={},
176
+ year={2023}
177
+ }
178
+ ```
179
+
180
+ # Contact
181
+
182
+ [contacto@clibrain.com](mailto:contacto@clibrain.com)
183
+
184
+ # How to Get Started with LINCE-ZERO
185
+
186
+ Use the code below to get started with LINCE-ZERO 🔥
187
 
 
188
  ```py
189
  import torch
190
  from transformers import AutoModelForCausalLM, AutoTokenizer, AutoTokenizer
191
 
192
  model_id = "clibrain/lince-zero"
193
 
 
 
194
  model = AutoModelForCausalLM.from_pretrained(model_id).to("cuda")
195
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
196
 
197
  def create_instruction(instruction, input_data=None, context=None):
198
  sections = {
 
224
  num_beams=4,
225
  **kwargs
226
  ):
227
+
228
  prompt = create_instruction(instruction, input, context)
229
  print(prompt)
230
  inputs = tokenizer(prompt, return_tensors="pt")
 
253
 
254
  instruction = "Dame una lista de lugares a visitar en España."
255
  print(generate(instruction))
256
+ ```