File size: 40,219 Bytes
ea0908d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 |
"""
0. multi-threaded actor
python sebulba_ppo_envpool.py --actor-device-ids 0 --num-actor-threads 2 --learner-device-ids 1 --params-queue-timeout 0.02 --profile --test-actor-learner-throughput --total-timesteps 500000 --track
python sebulba_ppo_envpool.py --actor-device-ids 0 --learner-device-ids 1 --params-queue-timeout 0.02 --profile --test-actor-learner-throughput --total-timesteps 500000 --track
🔥 core settings:
* test throughput
* python sebulba_ppo_envpool.py --exp-name sebula_thpt_a0_l1_timeout --actor-device-ids 0 --learner-device-ids 1 --params-queue-timeout 0.02 --profile --test-actor-learner-throughput --total-timesteps 500000 --track
* python sebulba_ppo_envpool.py --exp-name sebula_thpt_a0_l12_timeout --actor-device-ids 0 --learner-device-ids 1 2 --params-queue-timeout 0.02 --profile --test-actor-learner-throughput --total-timesteps 500000 --track
* this will help us diagnose the throughput issue
* python sebulba_ppo_envpool.py --exp-name sebula_thpt_a0_l1 --actor-device-ids 0 --learner-device-ids 1 --profile --total-timesteps 500000 --track
* python sebulba_ppo_envpool.py --exp-name sebula_thpt_a0_l12 --actor-device-ids 0 --learner-device-ids 1 2 --profile --total-timesteps 500000 --track
* python sebulba_ppo_envpool.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 --num-actor-threads 2 --track
* Best performance so far
* python sebulba_ppo_envpool.py --exp-name sebulba_ppo_envpool_a0_l01_rollout_is_faster --actor-device-ids 0 --learner-device-ids 0 1 --total-timesteps 500000 --track
* python sebulba_ppo_envpool.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 --params-queue-timeout 0.02 --track
# 1. rollout is faster than training
## throughput
python sebulba_ppo_envpool.py --exp-name sebulba_ppo_envpool_thpt_rollout_is_faster --actor-device-ids 0 --learner-device-ids 1 --params-queue-timeout 0.02 --profile --test-actor-learner-throughput --total-timesteps 500000 --track
## shared: actor on GPU0 and learner on GPU0
python sebulba_ppo_envpool.py --exp-name sebulba_ppo_envpool_1gpu_rollout_is_faster --actor-device-ids 0 --learner-device-ids 0 --total-timesteps 500000 --track
## separate: actor on GPU0 and learner on GPU1
python sebulba_ppo_envpool.py --exp-name sebulba_ppo_envpool_a0_l1_rollout_is_faster --actor-device-ids 0 --learner-device-ids 1 --total-timesteps 500000 --track
## shared: actor on GPU0 and learner on GPU0,1
python sebulba_ppo_envpool.py --exp-name sebulba_ppo_envpool_a0_l01_rollout_is_faster --actor-device-ids 0 --learner-device-ids 0 1 --total-timesteps 500000 --track
## separate: actor on GPU0 and learner on GPU1,2
python sebulba_ppo_envpool.py --exp-name sebulba_ppo_envpool_a0_l12_rollout_is_faster --actor-device-ids 0 --learner-device-ids 1 2 --total-timesteps 500000 --track
# 1.1 rollout is faster than training w/ timeout
## shared: actor on GPU0 and learner on GPU0
python sebulba_ppo_envpool.py --exp-name sebulba_ppo_envpool_1gpu_rollout_is_faster_timeout --actor-device-ids 0 --learner-device-ids 0 --params-queue-timeout 0.02 --total-timesteps 500000 --track
## separate: actor on GPU0 and learner on GPU1
python sebulba_ppo_envpool.py --exp-name sebulba_ppo_envpool_a0_l1_rollout_is_faster_timeout --actor-device-ids 0 --learner-device-ids 1 --params-queue-timeout 0.02 --total-timesteps 500000 --track
## shared: actor on GPU0 and learner on GPU0,1
python sebulba_ppo_envpool.py --exp-name sebulba_ppo_envpool_a0_l01_rollout_is_faster_timeout --actor-device-ids 0 --learner-device-ids 0 1 --params-queue-timeout 0.02 --total-timesteps 500000 --track
## separate: actor on GPU0 and learner on GPU1,2
python sebulba_ppo_envpool.py --exp-name sebulba_ppo_envpool_a0_l12_rollout_is_faster_timeout --actor-device-ids 0 --learner-device-ids 1 2 --params-queue-timeout 0.02 --total-timesteps 500000 --track
# 1.2. rollout is much faster than training w/ timeout
## throughput
python sebulba_ppo_envpool.py --exp-name sebulba_ppo_envpool_thpt_rollout_is_much_faster_timeout --actor-device-ids 0 --learner-device-ids 1 --update-epochs 8 --params-queue-timeout 0.02 --profile --test-actor-learner-throughput --total-timesteps 500000 --track
## shared: actor on GPU0 and learner on GPU0,1
python sebulba_ppo_envpool.py --exp-name sebulba_ppo_envpool_a0_l01_rollout_is_much_faster_timeout --actor-device-ids 0 --learner-device-ids 0 1 --update-epochs 8 --params-queue-timeout 0.02 --total-timesteps 500000 --track
## separate: actor on GPU0 and learner on GPU1,2
python sebulba_ppo_envpool.py --exp-name sebulba_ppo_envpool_a0_l12_rollout_is_much_faster_timeout --actor-device-ids 0 --learner-device-ids 1 2 --update-epochs 8 --params-queue-timeout 0.02 --total-timesteps 500000 --track
# 2. training is faster than rollout
## throughput
python sebulba_ppo_envpool.py --exp-name sebulba_ppo_envpool_thpt_training_is_faster --update-epochs 1 --async-batch-size 64 --actor-device-ids 0 --learner-device-ids 1 --params-queue-timeout 0.02 --profile --test-actor-learner-throughput --total-timesteps 500000 --track
## shared: actor on GPU0 and learner on GPU0
python sebulba_ppo_envpool.py --exp-name sebulba_ppo_envpool_1gpu_training_is_faster --update-epochs 1 --async-batch-size 64 --actor-device-ids 0 --learner-device-ids 0 --total-timesteps 500000 --track
## separate: actor on GPU0 and learner on GPU1
python sebulba_ppo_envpool.py --exp-name sebulba_ppo_envpool_a0_l1_training_is_faster --update-epochs 1 --async-batch-size 64 --actor-device-ids 0 --learner-device-ids 1 --total-timesteps 500000 --track
## shared: actor on GPU0 and learner on GPU0,1
python sebulba_ppo_envpool.py --exp-name sebulba_ppo_envpool_a0_l01_training_is_faster --update-epochs 1 --async-batch-size 64 --actor-device-ids 0 --learner-device-ids 0 1 --total-timesteps 500000 --track
## separate: actor on GPU0 and learner on GPU1,2
python sebulba_ppo_envpool.py --exp-name sebulba_ppo_envpool_a0_l12_training_is_faster --update-epochs 1 --async-batch-size 64 --actor-device-ids 0 --learner-device-ids 1 2 --total-timesteps 500000 --track
"""
# docs and experiment results can be found at https://docs.cleanrl.dev/rl-algorithms/ppo/#ppo_atari_envpool_async_jax_scan_impalanet_machadopy
# https://gregorygundersen.com/blog/2020/02/09/log-sum-exp/
import argparse
import os
import random
import time
import uuid
from collections import deque
from distutils.util import strtobool
from functools import partial
from typing import Sequence
os.environ[
"XLA_PYTHON_CLIENT_MEM_FRACTION"
] = "0.6" # see https://github.com/google/jax/discussions/6332#discussioncomment-1279991
os.environ["XLA_FLAGS"] = "--xla_cpu_multi_thread_eigen=false " "intra_op_parallelism_threads=1"
import multiprocessing as mp
import queue
import threading
import envpool
import flax
import flax.linen as nn
import gym
import jax
import jax.numpy as jnp
import numpy as np
import optax
from flax.linen.initializers import constant, orthogonal
from flax.training.train_state import TrainState
from torch.utils.tensorboard import SummaryWriter
def parse_args():
# fmt: off
parser = argparse.ArgumentParser()
parser.add_argument("--exp-name", type=str, default=os.path.basename(__file__).rstrip(".py"),
help="the name of this experiment")
parser.add_argument("--seed", type=int, default=1,
help="seed of the experiment")
parser.add_argument("--torch-deterministic", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
help="if toggled, `torch.backends.cudnn.deterministic=False`")
parser.add_argument("--cuda", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
help="if toggled, cuda will be enabled by default")
parser.add_argument("--track", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
help="if toggled, this experiment will be tracked with Weights and Biases")
parser.add_argument("--wandb-project-name", type=str, default="cleanRL",
help="the wandb's project name")
parser.add_argument("--wandb-entity", type=str, default=None,
help="the entity (team) of wandb's project")
parser.add_argument("--capture-video", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
help="weather to capture videos of the agent performances (check out `videos` folder)")
parser.add_argument("--save-model", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
help="whether to save model into the `runs/{run_name}` folder")
parser.add_argument("--upload-model", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
help="whether to upload the saved model to huggingface")
parser.add_argument("--hf-entity", type=str, default="",
help="the user or org name of the model repository from the Hugging Face Hub")
# Algorithm specific arguments
parser.add_argument("--env-id", type=str, default="Breakout-v5",
help="the id of the environment")
parser.add_argument("--total-timesteps", type=int, default=50000000,
help="total timesteps of the experiments")
parser.add_argument("--learning-rate", type=float, default=2.5e-4,
help="the learning rate of the optimizer")
parser.add_argument("--num-envs", type=int, default=64,
help="the number of parallel game environments")
parser.add_argument("--async-batch-size", type=int, default=16,
help="the envpool's batch size in the async mode")
parser.add_argument("--num-steps", type=int, default=128,
help="the number of steps to run in each environment per policy rollout")
parser.add_argument("--anneal-lr", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
help="Toggle learning rate annealing for policy and value networks")
parser.add_argument("--gamma", type=float, default=0.99,
help="the discount factor gamma")
parser.add_argument("--gae-lambda", type=float, default=0.95,
help="the lambda for the general advantage estimation")
parser.add_argument("--num-minibatches", type=int, default=4,
help="the number of mini-batches")
parser.add_argument("--update-epochs", type=int, default=4,
help="the K epochs to update the policy")
parser.add_argument("--norm-adv", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
help="Toggles advantages normalization")
parser.add_argument("--clip-coef", type=float, default=0.1,
help="the surrogate clipping coefficient")
parser.add_argument("--ent-coef", type=float, default=0.01,
help="coefficient of the entropy")
parser.add_argument("--vf-coef", type=float, default=0.5,
help="coefficient of the value function")
parser.add_argument("--max-grad-norm", type=float, default=0.5,
help="the maximum norm for the gradient clipping")
parser.add_argument("--target-kl", type=float, default=None,
help="the target KL divergence threshold")
parser.add_argument("--actor-device-ids", type=int, nargs="+", default=[0], # type is actually List[int]
help="the device ids that actor workers will use")
parser.add_argument("--learner-device-ids", type=int, nargs="+", default=[0], # type is actually List[int]
help="the device ids that actor workers will use")
parser.add_argument("--num-actor-threads", type=int, default=1,
help="the number of actor threads")
parser.add_argument("--profile", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
help="whether to call block_until_ready() for profiling")
parser.add_argument("--test-actor-learner-throughput", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
help="whether to test actor-learner throughput by removing the actor-learner communication")
parser.add_argument("--params-queue-timeout", type=float, default=None,
help="the timeout for the `params_queue.get()` operation in the actor thread to pull params;" + \
"by default it's `None`; if you set a timeout, it will likely make the actor run faster but will introduce some side effects," + \
"such as the actor will not be able to pull the latest params from the learner and will use the old params instead")
args = parser.parse_args()
args.batch_size = int(args.num_envs * args.num_steps)
args.minibatch_size = int(args.batch_size // args.num_minibatches)
args.num_updates = args.total_timesteps // args.batch_size
args.async_update = int(args.num_envs / args.async_batch_size)
assert len(args.actor_device_ids) == 1, "only 1 actor_device_ids is supported now"
# fmt: on
return args
LEARNER_WARMUP_TIME = 10 # seconds
def make_env(env_id, seed, num_envs, async_batch_size=1, num_threads=None, thread_affinity_offset=-1):
def thunk():
envs = envpool.make(
env_id,
env_type="gym",
num_envs=num_envs,
num_threads=num_threads if num_threads is not None else async_batch_size,
thread_affinity_offset=thread_affinity_offset,
batch_size=async_batch_size,
episodic_life=False, # Machado et al. 2017 (Revisitng ALE: Eval protocols) p. 6
repeat_action_probability=0.25, # Machado et al. 2017 (Revisitng ALE: Eval protocols) p. 12
noop_max=1, # Machado et al. 2017 (Revisitng ALE: Eval protocols) p. 12 (no-op is deprecated in favor of sticky action, right?)
full_action_space=True, # Machado et al. 2017 (Revisitng ALE: Eval protocols) Tab. 5
max_episode_steps=int(108000 / 4), # Hessel et al. 2018 (Rainbow DQN), Table 3, Max frames per episode
reward_clip=True,
seed=seed,
)
envs.num_envs = num_envs
envs.single_action_space = envs.action_space
envs.single_observation_space = envs.observation_space
envs.is_vector_env = True
return envs
return thunk
class ResidualBlock(nn.Module):
channels: int
@nn.compact
def __call__(self, x):
inputs = x
x = nn.relu(x)
x = nn.Conv(
self.channels,
kernel_size=(3, 3),
)(x)
x = nn.relu(x)
x = nn.Conv(
self.channels,
kernel_size=(3, 3),
)(x)
return x + inputs
class ConvSequence(nn.Module):
channels: int
@nn.compact
def __call__(self, x):
x = nn.Conv(
self.channels,
kernel_size=(3, 3),
)(x)
x = nn.max_pool(x, window_shape=(3, 3), strides=(2, 2), padding="SAME")
x = ResidualBlock(self.channels)(x)
x = ResidualBlock(self.channels)(x)
return x
class Network(nn.Module):
channelss: Sequence[int] = (16, 32, 32)
@nn.compact
def __call__(self, x):
x = jnp.transpose(x, (0, 2, 3, 1))
x = x / (255.0)
for channels in self.channelss:
x = ConvSequence(channels)(x)
x = nn.relu(x)
x = x.reshape((x.shape[0], -1))
x = nn.Dense(256, kernel_init=orthogonal(np.sqrt(2)), bias_init=constant(0.0))(x)
x = nn.relu(x)
return x
class Critic(nn.Module):
@nn.compact
def __call__(self, x):
return nn.Dense(1, kernel_init=orthogonal(1), bias_init=constant(0.0))(x)
class Actor(nn.Module):
action_dim: int
@nn.compact
def __call__(self, x):
return nn.Dense(self.action_dim, kernel_init=orthogonal(0.01), bias_init=constant(0.0))(x)
@flax.struct.dataclass
class AgentParams:
network_params: flax.core.FrozenDict
actor_params: flax.core.FrozenDict
critic_params: flax.core.FrozenDict
@partial(jax.jit, static_argnums=(3))
def get_action_and_value(
params: TrainState,
next_obs: np.ndarray,
key: jax.random.PRNGKey,
action_dim: int,
):
hidden = Network().apply(params.network_params, next_obs)
logits = Actor(action_dim).apply(params.actor_params, hidden)
# sample action: Gumbel-softmax trick
# see https://stats.stackexchange.com/questions/359442/sampling-from-a-categorical-distribution
key, subkey = jax.random.split(key)
u = jax.random.uniform(subkey, shape=logits.shape)
action = jnp.argmax(logits - jnp.log(-jnp.log(u)), axis=1)
logprob = jax.nn.log_softmax(logits)[jnp.arange(action.shape[0]), action]
value = Critic().apply(params.critic_params, hidden)
return action, logprob, value.squeeze(), key
@jax.jit
def prepare_data(
obs: list,
dones: list,
values: list,
actions: list,
logprobs: list,
env_ids: list,
rewards: list,
):
obs = jnp.asarray(obs)
dones = jnp.asarray(dones)
values = jnp.asarray(values)
actions = jnp.asarray(actions)
logprobs = jnp.asarray(logprobs)
env_ids = jnp.asarray(env_ids)
rewards = jnp.asarray(rewards)
# TODO: in an unlikely event, one of the envs might have not stepped at all, which may results in unexpected behavior
T, B = env_ids.shape
index_ranges = jnp.arange(T * B, dtype=jnp.int32)
next_index_ranges = jnp.zeros_like(index_ranges, dtype=jnp.int32)
last_env_ids = jnp.zeros(args.num_envs, dtype=jnp.int32) - 1
def f(carry, x):
last_env_ids, next_index_ranges = carry
env_id, index_range = x
next_index_ranges = next_index_ranges.at[last_env_ids[env_id]].set(
jnp.where(last_env_ids[env_id] != -1, index_range, next_index_ranges[last_env_ids[env_id]])
)
last_env_ids = last_env_ids.at[env_id].set(index_range)
return (last_env_ids, next_index_ranges), None
(last_env_ids, next_index_ranges), _ = jax.lax.scan(
f,
(last_env_ids, next_index_ranges),
(env_ids.reshape(-1), index_ranges),
)
# rewards is off by one time step
rewards = rewards.reshape(-1)[next_index_ranges].reshape((args.num_steps) * args.async_update, args.async_batch_size)
advantages, returns, _, final_env_ids = compute_gae(env_ids, rewards, values, dones)
# b_inds = jnp.nonzero(final_env_ids.reshape(-1), size=(args.num_steps) * args.async_update * args.async_batch_size)[0] # useful for debugging
b_obs = obs.reshape((-1,) + obs.shape[2:])
b_actions = actions.reshape(-1)
b_logprobs = logprobs.reshape(-1)
b_advantages = advantages.reshape(-1)
b_returns = returns.reshape(-1)
return b_obs, b_actions, b_logprobs, b_advantages, b_returns
def rollout(
i,
num_threads, # =None,
thread_affinity_offset, # =-1,
key: jax.random.PRNGKey,
args,
rollout_queue,
params_queue: queue.Queue,
writer,
learner_devices,
):
envs = make_env(args.env_id, args.seed, args.num_envs, args.async_batch_size, num_threads, thread_affinity_offset)()
len_actor_device_ids = len(args.actor_device_ids)
global_step = 0
# TRY NOT TO MODIFY: start the game
start_time = time.time()
# put data in the last index
episode_returns = np.zeros((args.num_envs,), dtype=np.float32)
returned_episode_returns = np.zeros((args.num_envs,), dtype=np.float32)
episode_lengths = np.zeros((args.num_envs,), dtype=np.float32)
returned_episode_lengths = np.zeros((args.num_envs,), dtype=np.float32)
envs.async_reset()
params_queue_get_time = deque(maxlen=10)
rollout_time = deque(maxlen=10)
data_transfer_time = deque(maxlen=10)
rollout_queue_put_time = deque(maxlen=10)
params_timeout_count = 0
for update in range(1, args.num_updates + 2):
update_time_start = time.time()
obs = []
dones = []
actions = []
logprobs = []
values = []
env_ids = []
rewards = []
truncations = []
terminations = []
env_recv_time = 0
inference_time = 0
storage_time = 0
env_send_time = 0
# NOTE: This is a major difference from the sync version:
# at the end of the rollout phase, the sync version will have the next observation
# ready for the value bootstrap, but the async version will not have it.
# for this reason we do `num_steps + 1`` to get the extra states for value bootstrapping.
# but note that the extra states are not used for the loss computation in the next iteration,
# while the sync version will use the extra state for the loss computation.
params_queue_get_time_start = time.time()
try:
params = params_queue.get(timeout=args.params_queue_timeout)
except queue.Empty:
# print("params_queue.get timeout triggered")
params_timeout_count += 1
params_queue_get_time.append(time.time() - params_queue_get_time_start)
writer.add_scalar("stats/params_queue_get_time", np.mean(params_queue_get_time), global_step)
writer.add_scalar("stats/params_queue_timeout_count", params_timeout_count, global_step)
rollout_time_start = time.time()
for _ in range(
args.async_update, (args.num_steps + 1) * args.async_update
): # num_steps + 1 to get the states for value bootstrapping.
env_recv_time_start = time.time()
next_obs, next_reward, next_done, info = envs.recv()
env_recv_time += time.time() - env_recv_time_start
global_step += len(next_done) * args.num_actor_threads * len_actor_device_ids
env_id = info["env_id"]
inference_time_start = time.time()
action, logprob, value, key = get_action_and_value(params, next_obs, key, envs.single_action_space.n)
inference_time += time.time() - inference_time_start
env_send_time_start = time.time()
envs.send(np.array(action), env_id)
env_send_time += time.time() - env_send_time_start
storage_time_start = time.time()
obs.append(next_obs)
dones.append(next_done)
values.append(value)
actions.append(action)
logprobs.append(logprob)
env_ids.append(env_id)
rewards.append(next_reward)
truncations.append(info["TimeLimit.truncated"])
terminations.append(info["terminated"])
episode_returns[env_id] += info["reward"]
returned_episode_returns[env_id] = np.where(
info["terminated"] + info["TimeLimit.truncated"], episode_returns[env_id], returned_episode_returns[env_id]
)
episode_returns[env_id] *= (1 - info["terminated"]) * (1 - info["TimeLimit.truncated"])
episode_lengths[env_id] += 1
returned_episode_lengths[env_id] = np.where(
info["terminated"] + info["TimeLimit.truncated"], episode_lengths[env_id], returned_episode_lengths[env_id]
)
episode_lengths[env_id] *= (1 - info["terminated"]) * (1 - info["TimeLimit.truncated"])
storage_time += time.time() - storage_time_start
if args.profile:
action.block_until_ready()
rollout_time.append(time.time() - rollout_time_start)
writer.add_scalar("stats/rollout_time", np.mean(rollout_time), global_step)
avg_episodic_return = np.mean(returned_episode_returns)
writer.add_scalar("charts/avg_episodic_return", avg_episodic_return, global_step)
writer.add_scalar("charts/avg_episodic_length", np.mean(returned_episode_lengths), global_step)
if i == 0:
print(f"global_step={global_step}, avg_episodic_return={avg_episodic_return}")
print("SPS:", int(global_step / (time.time() - start_time)))
writer.add_scalar("charts/SPS", int(global_step / (time.time() - start_time)), global_step)
writer.add_scalar("stats/truncations", np.sum(truncations), global_step)
writer.add_scalar("stats/terminations", np.sum(terminations), global_step)
writer.add_scalar("stats/env_recv_time", env_recv_time, global_step)
writer.add_scalar("stats/inference_time", inference_time, global_step)
writer.add_scalar("stats/storage_time", storage_time, global_step)
writer.add_scalar("stats/env_send_time", env_send_time, global_step)
data_transfer_time_start = time.time()
b_obs, b_actions, b_logprobs, b_advantages, b_returns = prepare_data(
obs,
dones,
values,
actions,
logprobs,
env_ids,
rewards,
)
payload = (
global_step,
update,
jnp.array_split(b_obs, len(learner_devices)),
jnp.array_split(b_actions, len(learner_devices)),
jnp.array_split(b_logprobs, len(learner_devices)),
jnp.array_split(b_advantages, len(learner_devices)),
jnp.array_split(b_returns, len(learner_devices)),
)
if args.profile:
payload[2][0].block_until_ready()
data_transfer_time.append(time.time() - data_transfer_time_start)
writer.add_scalar("stats/data_transfer_time", np.mean(data_transfer_time), global_step)
if update == 1 or not args.test_actor_learner_throughput:
rollout_queue_put_time_start = time.time()
rollout_queue.put(payload)
rollout_queue_put_time.append(time.time() - rollout_queue_put_time_start)
writer.add_scalar("stats/rollout_queue_put_time", np.mean(rollout_queue_put_time), global_step)
if update == 1 or update == 2 or update == 3:
time.sleep(LEARNER_WARMUP_TIME) # makes sure the actor does to fill the rollout_queue at the get go
writer.add_scalar(
"charts/SPS_update",
int(
args.num_envs
* args.num_steps
* args.num_actor_threads
* len_actor_device_ids
/ (time.time() - update_time_start)
),
global_step,
)
@partial(jax.jit, static_argnums=(3))
def get_action_and_value2(
params: flax.core.FrozenDict,
x: np.ndarray,
action: np.ndarray,
action_dim: int,
):
hidden = Network().apply(params.network_params, x)
logits = Actor(action_dim).apply(params.actor_params, hidden)
logprob = jax.nn.log_softmax(logits)[jnp.arange(action.shape[0]), action]
logits = logits - jax.scipy.special.logsumexp(logits, axis=-1, keepdims=True)
logits = logits.clip(min=jnp.finfo(logits.dtype).min)
p_log_p = logits * jax.nn.softmax(logits)
entropy = -p_log_p.sum(-1)
value = Critic().apply(params.critic_params, hidden).squeeze()
return logprob, entropy, value
@jax.jit
def compute_gae(
env_ids: np.ndarray,
rewards: np.ndarray,
values: np.ndarray,
dones: np.ndarray,
):
dones = jnp.asarray(dones)
values = jnp.asarray(values)
env_ids = jnp.asarray(env_ids)
rewards = jnp.asarray(rewards)
_, B = env_ids.shape
final_env_id_checked = jnp.zeros(args.num_envs, jnp.int32) - 1
final_env_ids = jnp.zeros(B, jnp.int32)
advantages = jnp.zeros(B)
lastgaelam = jnp.zeros(args.num_envs)
lastdones = jnp.zeros(args.num_envs) + 1
lastvalues = jnp.zeros(args.num_envs)
def compute_gae_once(carry, x):
lastvalues, lastdones, advantages, lastgaelam, final_env_ids, final_env_id_checked = carry
(
done,
value,
eid,
reward,
) = x
nextnonterminal = 1.0 - lastdones[eid]
nextvalues = lastvalues[eid]
delta = jnp.where(final_env_id_checked[eid] == -1, 0, reward + args.gamma * nextvalues * nextnonterminal - value)
advantages = delta + args.gamma * args.gae_lambda * nextnonterminal * lastgaelam[eid]
final_env_ids = jnp.where(final_env_id_checked[eid] == 1, 1, 0)
final_env_id_checked = final_env_id_checked.at[eid].set(
jnp.where(final_env_id_checked[eid] == -1, 1, final_env_id_checked[eid])
)
# the last_ variables keeps track of the actual `num_steps`
lastgaelam = lastgaelam.at[eid].set(advantages)
lastdones = lastdones.at[eid].set(done)
lastvalues = lastvalues.at[eid].set(value)
return (lastvalues, lastdones, advantages, lastgaelam, final_env_ids, final_env_id_checked), (
advantages,
final_env_ids,
)
(_, _, _, _, final_env_ids, final_env_id_checked), (advantages, final_env_ids) = jax.lax.scan(
compute_gae_once,
(
lastvalues,
lastdones,
advantages,
lastgaelam,
final_env_ids,
final_env_id_checked,
),
(
dones,
values,
env_ids,
rewards,
),
reverse=True,
)
return advantages, advantages + values, final_env_id_checked, final_env_ids
def ppo_loss(params, x, a, logp, mb_advantages, mb_returns, action_dim):
newlogprob, entropy, newvalue = get_action_and_value2(params, x, a, action_dim)
logratio = newlogprob - logp
ratio = jnp.exp(logratio)
approx_kl = ((ratio - 1) - logratio).mean()
if args.norm_adv:
mb_advantages = (mb_advantages - mb_advantages.mean()) / (mb_advantages.std() + 1e-8)
# Policy loss
pg_loss1 = -mb_advantages * ratio
pg_loss2 = -mb_advantages * jnp.clip(ratio, 1 - args.clip_coef, 1 + args.clip_coef)
pg_loss = jnp.maximum(pg_loss1, pg_loss2).mean()
# Value loss
v_loss = 0.5 * ((newvalue - mb_returns) ** 2).mean()
entropy_loss = entropy.mean()
loss = pg_loss - args.ent_coef * entropy_loss + v_loss * args.vf_coef
return loss, (pg_loss, v_loss, entropy_loss, jax.lax.stop_gradient(approx_kl))
@partial(jax.jit, static_argnums=(6))
def single_device_update(
agent_state: TrainState,
b_obs,
b_actions,
b_logprobs,
b_advantages,
b_returns,
action_dim,
key: jax.random.PRNGKey,
):
ppo_loss_grad_fn = jax.value_and_grad(ppo_loss, has_aux=True)
def update_epoch(carry, _):
agent_state, key = carry
key, subkey = jax.random.split(key)
# taken from: https://github.com/google/brax/blob/main/brax/training/agents/ppo/train.py
def convert_data(x: jnp.ndarray):
x = jax.random.permutation(subkey, x)
x = jnp.reshape(x, (args.num_minibatches, -1) + x.shape[1:])
return x
def update_minibatch(agent_state, minibatch):
mb_obs, mb_actions, mb_logprobs, mb_advantages, mb_returns = minibatch
(loss, (pg_loss, v_loss, entropy_loss, approx_kl)), grads = ppo_loss_grad_fn(
agent_state.params,
mb_obs,
mb_actions,
mb_logprobs,
mb_advantages,
mb_returns,
action_dim,
)
grads = jax.lax.pmean(grads, axis_name="devices")
agent_state = agent_state.apply_gradients(grads=grads)
return agent_state, (loss, pg_loss, v_loss, entropy_loss, approx_kl, grads)
agent_state, (loss, pg_loss, v_loss, entropy_loss, approx_kl, grads) = jax.lax.scan(
update_minibatch,
agent_state,
(
convert_data(b_obs),
convert_data(b_actions),
convert_data(b_logprobs),
convert_data(b_advantages),
convert_data(b_returns),
),
)
return (agent_state, key), (loss, pg_loss, v_loss, entropy_loss, approx_kl, grads)
(agent_state, key), (loss, pg_loss, v_loss, entropy_loss, approx_kl, _) = jax.lax.scan(
update_epoch, (agent_state, key), (), length=args.update_epochs
)
return agent_state, loss, pg_loss, v_loss, entropy_loss, approx_kl, key
if __name__ == "__main__":
devices = jax.devices("gpu")
args = parse_args()
run_name = f"{args.env_id}__{args.exp_name}__{args.seed}__{uuid.uuid4()}"
if args.track:
import wandb
wandb.init(
project=args.wandb_project_name,
entity=args.wandb_entity,
sync_tensorboard=True,
config=vars(args),
name=run_name,
monitor_gym=True,
save_code=True,
)
writer = SummaryWriter(f"runs/{run_name}")
writer.add_text(
"hyperparameters",
"|param|value|\n|-|-|\n%s" % ("\n".join([f"|{key}|{value}|" for key, value in vars(args).items()])),
)
# TRY NOT TO MODIFY: seeding
random.seed(args.seed)
np.random.seed(args.seed)
key = jax.random.PRNGKey(args.seed)
key, network_key, actor_key, critic_key = jax.random.split(key, 4)
# env setup
envs = make_env(args.env_id, args.seed, args.num_envs, args.async_batch_size)()
assert isinstance(envs.single_action_space, gym.spaces.Discrete), "only discrete action space is supported"
def linear_schedule(count):
# anneal learning rate linearly after one training iteration which contains
# (args.num_minibatches * args.update_epochs) gradient updates
frac = 1.0 - (count // (args.num_minibatches * args.update_epochs)) / args.num_updates
return args.learning_rate * frac
network = Network()
actor = Actor(action_dim=envs.single_action_space.n)
critic = Critic()
network_params = network.init(network_key, np.array([envs.single_observation_space.sample()]))
agent_state = TrainState.create(
apply_fn=None,
params=AgentParams(
network_params,
actor.init(actor_key, network.apply(network_params, np.array([envs.single_observation_space.sample()]))),
critic.init(critic_key, network.apply(network_params, np.array([envs.single_observation_space.sample()]))),
),
tx=optax.chain(
optax.clip_by_global_norm(args.max_grad_norm),
optax.inject_hyperparams(optax.adam)(
learning_rate=linear_schedule if args.anneal_lr else args.learning_rate, eps=1e-5
),
),
)
learner_devices = [devices[d_id] for d_id in args.learner_device_ids]
actor_devices = [devices[d_id] for d_id in args.actor_device_ids]
agent_state = flax.jax_utils.replicate(agent_state, devices=learner_devices)
multi_device_update = jax.pmap(
single_device_update,
axis_name="devices",
devices=learner_devices,
in_axes=(0, 0, 0, 0, 0, 0, None, None),
out_axes=(0, 0, 0, 0, 0, 0, None),
static_broadcasted_argnums=(6),
)
rollout_queue = queue.Queue(maxsize=2)
params_queues = []
num_cpus = mp.cpu_count()
fair_num_cpus = num_cpus // len(args.actor_device_ids)
class DummyWriter:
def add_scalar(self, arg0, arg1, arg3):
pass
# lock = threading.Lock()
# AgentParamsStore = namedtuple("AgentParamsStore", ["params", "version"])
# agent_params_store = AgentParamsStore(agent_state.params, 0)
dummy_writer = DummyWriter()
for d_idx, d_id in enumerate(args.actor_device_ids):
for j in range(args.num_actor_threads):
params_queue = queue.Queue(maxsize=2)
params_queue.put(jax.device_put(flax.jax_utils.unreplicate(agent_state.params), devices[d_id]))
threading.Thread(
target=rollout,
args=(
j,
fair_num_cpus if args.num_actor_threads > 1 else None,
j * args.num_actor_threads if args.num_actor_threads > 1 else -1,
jax.device_put(key, devices[d_id]),
args,
rollout_queue,
params_queue,
writer if d_idx == 0 and j == 0 else dummy_writer,
learner_devices,
),
).start()
params_queues.append(params_queue)
rollout_queue_get_time = deque(maxlen=10)
learner_update = 0
while True:
learner_update += 1
if learner_update == 1 or not args.test_actor_learner_throughput:
rollout_queue_get_time_start = time.time()
global_step, update, b_obs, b_actions, b_logprobs, b_advantages, b_returns = rollout_queue.get()
rollout_queue_get_time.append(time.time() - rollout_queue_get_time_start)
writer.add_scalar("stats/rollout_queue_get_time", np.mean(rollout_queue_get_time), global_step)
training_time_start = time.time()
(agent_state, loss, pg_loss, v_loss, entropy_loss, approx_kl, key) = multi_device_update(
agent_state,
jax.device_put_sharded(b_obs, learner_devices),
jax.device_put_sharded(b_actions, learner_devices),
jax.device_put_sharded(b_logprobs, learner_devices),
jax.device_put_sharded(b_advantages, learner_devices),
jax.device_put_sharded(b_returns, learner_devices),
envs.single_action_space.n,
key,
)
if learner_update == 1 or not args.test_actor_learner_throughput:
for d_idx, d_id in enumerate(args.actor_device_ids):
for j in range(args.num_actor_threads):
params_queues[d_idx * args.num_actor_threads + j].put(
jax.device_put(flax.jax_utils.unreplicate(agent_state.params), devices[d_id])
)
if args.profile:
v_loss[-1, -1, -1].block_until_ready()
writer.add_scalar("stats/training_time", time.time() - training_time_start, global_step)
writer.add_scalar("stats/rollout_queue_size", rollout_queue.qsize(), global_step)
writer.add_scalar("stats/params_queue_size", params_queue.qsize(), global_step)
print(global_step, update, rollout_queue.qsize(), f"training time: {time.time() - training_time_start}s")
# TRY NOT TO MODIFY: record rewards for plotting purposes
writer.add_scalar("charts/learning_rate", agent_state.opt_state[1].hyperparams["learning_rate"][0].item(), global_step)
writer.add_scalar("losses/value_loss", v_loss[-1, -1, -1].item(), global_step)
writer.add_scalar("losses/policy_loss", pg_loss[-1, -1, -1].item(), global_step)
writer.add_scalar("losses/entropy", entropy_loss[-1, -1, -1].item(), global_step)
writer.add_scalar("losses/approx_kl", approx_kl[-1, -1, -1].item(), global_step)
writer.add_scalar("losses/loss", loss[-1, -1, -1].item(), global_step)
if update > args.num_updates:
break
if args.save_model:
agent_state = flax.jax_utils.unreplicate(agent_state)
model_path = f"runs/{run_name}/{args.exp_name}.cleanrl_model"
with open(model_path, "wb") as f:
f.write(
flax.serialization.to_bytes(
[
vars(args),
[
agent_state.params.network_params,
agent_state.params.actor_params,
agent_state.params.critic_params,
],
]
)
)
print(f"model saved to {model_path}")
from cleanrl_utils.evals.ppo_envpool_jax_eval import evaluate
episodic_returns = evaluate(
model_path,
make_env,
args.env_id,
eval_episodes=10,
run_name=f"{run_name}-eval",
Model=(Network, Actor, Critic),
)
for idx, episodic_return in enumerate(episodic_returns):
writer.add_scalar("eval/episodic_return", episodic_return, idx)
if args.upload_model:
from cleanrl_utils.huggingface import push_to_hub
repo_name = f"{args.env_id}-{args.exp_name}-seed{args.seed}"
repo_id = f"{args.hf_entity}/{repo_name}" if args.hf_entity else repo_name
push_to_hub(
args,
episodic_returns,
repo_id,
"PPO",
f"runs/{run_name}",
f"videos/{run_name}-eval",
extra_dependencies=["jax", "envpool", "atari"],
)
envs.close()
writer.close()
|