File size: 4,945 Bytes
0b097f3
6025bb2
79b32b1
6025bb2
0b097f3
 
94edd53
 
0b097f3
6025bb2
0b097f3
6025bb2
0b097f3
6025bb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b097f3
6025bb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b097f3
6025bb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b097f3
6025bb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
---
language:
- code
license: apache-2.0
---

> [!NOTE]
> This is an *unofficial* reupload of [microsoft/unixcoder-base](https://huggingface.co/microsoft/unixcoder-base) in the `SafeTensors` format using `transformers` `4.40.1`. The goal of this reupload is to prevent older models that are still relevant baselines from becoming stale as a result of changes in HuggingFace. Additionally, I may include minor corrections, such as model max length configuration.

Original model card below:

---

# Model Card for UniXcoder-base

 
 
# Model Details
 
## Model Description
UniXcoder is a unified cross-modal pre-trained model that leverages multimodal data (i.e. code comment and AST) to pretrain code representation. 
 
- **Developed by:** Microsoft Team 
- **Shared by [Optional]:** Hugging Face
- **Model type:** Feature Engineering
- **Language(s) (NLP):** en
- **License:** Apache-2.0
- **Related Models:**
  - **Parent Model:** RoBERTa
- **Resources for more information:**
    - [Associated Paper](https://arxiv.org/abs/2203.03850)
 
# Uses
 
 
 
## Direct Use
 Feature Engineering
 
 
## Downstream Use [Optional]
 
More information needed
 
## Out-of-Scope Use
 
More information needed
 
# Bias, Risks, and Limitations
 
Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.
 
 
## Recommendations
 
 
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
 
 
# Training Details
 
## Training Data
 
More information needed
 
## Training Procedure
 
### Preprocessing
 
More information needed
 
### Speeds, Sizes, Times
More information needed
 
# Evaluation
 
 
## Testing Data, Factors & Metrics
 
### Testing Data
More information needed
 
### Factors
 
The model creators note in the [associated paper](https://arxiv.org/abs/2203.03850):
 
> UniXcoder has slightly worse BLEU-4 scores on both code summarization and generation tasks. The main reasons may come from two aspects. One is the amount of NL-PL pairs in the pre-training data
 
### Metrics
 
The model creators note in the [associated paper](https://arxiv.org/abs/2203.03850):
 
> We evaluate UniXcoder on five tasks over nine public datasets, including two understanding tasks, two generation tasks and an autoregressive task. To further evaluate the performance of code fragment embeddings, we also propose a new task called zero-shot code-to-code search.
 
## Results 
 
The model creators note in the [associated paper](https://arxiv.org/abs/2203.03850):
 
>Taking zero-shot code-code search task as an example, after removing contrastive learning, the performance drops from 20.45% to 13.73%.
 
# Model Examination
 
More information needed
 
# Environmental Impact
 
 
 
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
 
- **Hardware Type:** More information needed
- **Hours used:** More information needed
- **Cloud Provider:** More information needed
- **Compute Region:** More information needed
- **Carbon Emitted:** More information needed
 
# Technical Specifications [optional]
 
## Model Architecture and Objective
 
More information needed
 
## Compute Infrastructure
 
More information needed
 
### Hardware
 
More information needed
 
### Software
 
More information needed
 
# Citation
 
 
**BibTeX:**
 ```
@misc{https://doi.org/10.48550/arxiv.2203.03850,
  doi = {10.48550/ARXIV.2203.03850},
  
  url = {https://arxiv.org/abs/2203.03850},
  
  author = {Guo, Daya and Lu, Shuai and Duan, Nan and Wang, Yanlin and Zhou, Ming and Yin, Jian},
  
  keywords = {Computation and Language (cs.CL), Programming Languages (cs.PL), Software Engineering (cs.SE), FOS: Computer and information sciences, FOS: Computer and information sciences},
  
  title = {UniXcoder: Unified Cross-Modal Pre-training for Code 
```
 
 
# Glossary [optional]
 
More information needed
 
# More Information [optional]
 
More information needed
 
# Model Card Authors [optional]
 
Microsoft Team in collaboration with Ezi Ozoani and the Hugging Face Team.
 
# Model Card Contact
 
More information needed
 
# How to Get Started with the Model
 
Use the code below to get started with the model.
 
<details>
<summary> Click to expand </summary>

```python
from transformers import AutoTokenizer, AutoModel
 
tokenizer = AutoTokenizer.from_pretrained("microsoft/unixcoder-base")
 
model = AutoModel.from_pretrained("microsoft/unixcoder-base")
 
 ```
</details>