File size: 2,315 Bytes
fd07a91
 
 
 
 
 
 
 
 
 
 
 
3e57b17
 
 
 
 
fd07a91
fb98705
 
 
 
 
843b7e8
 
 
 
 
6ca647b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e58e06c
6ca647b
3c3e1a4
 
 
 
 
 
 
 
 
 
 
9090130
3c3e1a4
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
license: apache-2.0
language:
- bs
- hr
- sr
- sl
- sk
- cs
- en
tags:
- sentiment-analysis
- text-regression
- text-classification
- sentiment-regression
- sentiment-classification
- parliament
widget:
- text: >-
    Poštovani potpredsjedničke Vlade i ministre hrvatskih branitelja, mislite li
    da ste zapravo iznevjerili svoje suborce s kojima ste 555 dana prosvjedovali
    u šatoru protiv tadašnjih dužnosnika jer ste zapravo donijeli zakon koji je
    neprovediv, a birali ste si suradnike koji nemaju etički integritet.
---


# Multilingual parliament sentiment regression model XLM-R-Parla-Sent

This model is based on [xlm-r-parla](https://huggingface.co/classla/xlm-r-parla) and fine-tuned on manually annotated sentiment datasets from United Kingdom, Czechia, Slovakia, Slovenia, Bosnia and Herzegovina, Croatia, and Serbia.

## Annotation schema

The discrete labels, present in the original dataset, were mapped to integers as follows:

```
  "Negative": 0.0,
  "M_Negative": 1.0,
  "N_Neutral": 2.0,
  "P_Neutral": 3.0,
  "M_Positive": 4.0,
  "Positive": 5.0,
```
Model was then fine-tuned on numeric labels and setup as regressor.



## Finetuning procedure

The fine-tuning procedure is described in this paper (ARXIV SUBMISSION to be added). Presumed optimal hyperparameters used are
```
  num_train_epochs=4,
  train_batch_size=32,
  learning_rate=8e-6,
  regression=True
```

## Results

Results reported were obtained from 10 fine-tuning runs.

test dataset | R^2 
--- | ---
BCS | 0.6146 ± 0.0104
EN | 0.6722 ± 0.0100

## Example

With `simpletransformers==0.64.3`.
```python
from simpletransformers.classification import ClassificationModel, ClassificationArgs
import torch
model_args = ClassificationArgs(
        regression=True,
    )
model = ClassificationModel(model_type="xlmroberta", model_name="classla/xlm-r-parlasent",use_cuda=torch.cuda.is_available(), num_labels=1,args=model_args)
model.predict(["""Poštovani potpredsjedničke Vlade i ministre hrvatskih branitelja, mislite li
da ste zapravo iznevjerili svoje suborce s kojima ste 555 dana prosvjedovali
u šatoru protiv tadašnjih dužnosnika jer ste zapravo donijeli zakon koji je
neprovediv, a birali ste si suradnike koji nemaju etički integritet."""])
```

Output:
``` (array(-0.0847168), array(-0.0847168))```