Add evaluation details and env specs
Browse files- README.md +56 -29
- transformers_env.yml +423 -0
README.md
CHANGED
|
@@ -13,16 +13,17 @@ base_model:
|
|
| 13 |
|
| 14 |
# Wav2Vec2Bert Audio frame classifier for prosodic unit detection
|
| 15 |
|
| 16 |
-
This model predicts prosodic units on speech.
|
| 17 |
-
|
| 18 |
-
|
| 19 |
|
| 20 |
-
This frame-level output can be grouped into events with the frames_to_intervals
|
| 21 |
-
code snippets below.
|
| 22 |
|
| 23 |
-
It is known that the model is unreliable if the audio starts or ends within a
|
| 24 |
-
circumvented by 1) using the largest
|
| 25 |
-
and
|
|
|
|
| 26 |
|
| 27 |
|
| 28 |
|
|
@@ -31,16 +32,39 @@ and combining results smartly.
|
|
| 31 |
|
| 32 |
### Model Description
|
| 33 |
|
| 34 |
-
<!-- Provide a longer summary of what this model is. -->
|
| 35 |
|
| 36 |
-
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
| 37 |
|
| 38 |
-
- **Developed by:** Peter Rupnik, Nikola Ljubešić, Darinka Verdonik, Simona
|
|
|
|
| 39 |
- **Funded by:** MEZZANINE project
|
| 40 |
- **Model type:** Wav2Vec2Bert for Audio Frame Classification
|
| 41 |
-
- **Language(s) (NLP):** Trained and tested on Slovenian, ATM unclear if usable
|
|
|
|
| 42 |
- **Finetuned from model:** facebook/w2v-bert-2.0
|
| 43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
|
| 45 |
## Uses
|
| 46 |
|
|
@@ -107,9 +131,9 @@ def evaluator(chunks):
|
|
| 107 |
"prosodic_units": prosodic_units,
|
| 108 |
}
|
| 109 |
|
| 110 |
-
|
| 111 |
-
ds = Dataset.from_dict({"audio": [f
|
| 112 |
-
ds = ds.map(evaluator, batched=True, batch_size=
|
| 113 |
print(ds["y_pred"][0])
|
| 114 |
# Outputs: [0, 0, 1, 1, 1, 1, 1, ...]
|
| 115 |
print(ds["y_pred_logits"][0])
|
|
@@ -124,9 +148,11 @@ print(ds["prosodic_units"][0])
|
|
| 124 |
|
| 125 |
|
| 126 |
### Inference on longer files
|
| 127 |
-
If the file is too big for straight-forward inference, some chunking needs to be
|
| 128 |
-
We know that for starts and ends of chunks the
|
| 129 |
-
|
|
|
|
|
|
|
| 130 |
```python
|
| 131 |
import numpy as np
|
| 132 |
|
|
@@ -266,14 +292,15 @@ print(final_intervals)
|
|
| 266 |
|
| 267 |
## Training Details
|
| 268 |
|
| 269 |
-
|hyperparameter|value|
|
| 270 |
-
|
| 271 |
-
|learning rate|3e-5|
|
| 272 |
-
|batch size|1|
|
| 273 |
-
|gradient accumulation steps|16|
|
| 274 |
-
|num train epochs|20|
|
| 275 |
-
|weight decay|0.01|
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
|
|
|
|
|
| 13 |
|
| 14 |
# Wav2Vec2Bert Audio frame classifier for prosodic unit detection
|
| 15 |
|
| 16 |
+
This model predicts prosodic units on speech. For each 20ms frame the model
|
| 17 |
+
predicts 1 or 0, indicating whether there is a prosodic unit in this frame or
|
| 18 |
+
not.
|
| 19 |
|
| 20 |
+
This frame-level output can be grouped into events with the frames_to_intervals
|
| 21 |
+
function provided in the code snippets below.
|
| 22 |
|
| 23 |
+
It is known that the model is unreliable if the audio starts or ends within a
|
| 24 |
+
prosodic unit. This can be somewhat circumvented by 1) using the largest
|
| 25 |
+
possible chunks that will fit your machine and 2) use overlapping chunks and
|
| 26 |
+
combining results smartly.
|
| 27 |
|
| 28 |
|
| 29 |
|
|
|
|
| 32 |
|
| 33 |
### Model Description
|
| 34 |
|
|
|
|
| 35 |
|
|
|
|
| 36 |
|
| 37 |
+
- **Developed by:** Peter Rupnik, Nikola Ljubešić, Darinka Verdonik, Simona
|
| 38 |
+
Majhenič
|
| 39 |
- **Funded by:** MEZZANINE project
|
| 40 |
- **Model type:** Wav2Vec2Bert for Audio Frame Classification
|
| 41 |
+
- **Language(s) (NLP):** Trained and tested on Slovenian, ATM unclear if usable
|
| 42 |
+
cross-lingually
|
| 43 |
- **Finetuned from model:** facebook/w2v-bert-2.0
|
| 44 |
|
| 45 |
+
The model was trained on [ROG-Art dataset](http://hdl.handle.net/11356/1992), on
|
| 46 |
+
train split only.
|
| 47 |
+
|
| 48 |
+
### Model performance
|
| 49 |
+
|
| 50 |
+
We evaluate the model indirectly, and only care about the positive class:
|
| 51 |
+
|
| 52 |
+
1. first prosodic units (intervals with start and end times, e.g. `[0.123,
|
| 53 |
+
5.546]`) are extracted from data and model outputs
|
| 54 |
+
2. if a predicted prosodic unit has an overlapping counterpart in true prosodic
|
| 55 |
+
units, we count it as a True Positive. If there is no overlapping true
|
| 56 |
+
counterpart, we count it as a False Positive, and if we have a true prosodic
|
| 57 |
+
unit without a counterpart in predictions, we count that as a False Negative.
|
| 58 |
+
3. Based on the TP, FN, FP numbers recall, precision, and F1 score is
|
| 59 |
+
calculated.
|
| 60 |
+
|
| 61 |
+
In this fashion we obtain the following metrics:
|
| 62 |
+
|
| 63 |
+
* Precision: 0.9423
|
| 64 |
+
* Recall: 0.7802
|
| 65 |
+
* F_1 score: 0.8538
|
| 66 |
+
|
| 67 |
+
|
| 68 |
|
| 69 |
## Uses
|
| 70 |
|
|
|
|
| 131 |
"prosodic_units": prosodic_units,
|
| 132 |
}
|
| 133 |
|
| 134 |
+
# Create a dataset with a single instance and map our evaluator function on it:
|
| 135 |
+
ds = Dataset.from_dict({"audio": [f]}).cast_column("audio", Audio(16000, mono=True))
|
| 136 |
+
ds = ds.map(evaluator, batched=True, batch_size=1) # Adjust batch size according to your hardware specs
|
| 137 |
print(ds["y_pred"][0])
|
| 138 |
# Outputs: [0, 0, 1, 1, 1, 1, 1, ...]
|
| 139 |
print(ds["y_pred_logits"][0])
|
|
|
|
| 148 |
|
| 149 |
|
| 150 |
### Inference on longer files
|
| 151 |
+
If the file is too big for straight-forward inference, some chunking needs to be
|
| 152 |
+
performed in order to process it. We know that for starts and ends of chunks the
|
| 153 |
+
probability of false negatives increases, so it is best to process the file with
|
| 154 |
+
some overlap between chunks or split it on silence. We illustrate the former
|
| 155 |
+
approach here:
|
| 156 |
```python
|
| 157 |
import numpy as np
|
| 158 |
|
|
|
|
| 292 |
|
| 293 |
## Training Details
|
| 294 |
|
| 295 |
+
| hyperparameter | value |
|
| 296 |
+
| --------------------------- | ----- |
|
| 297 |
+
| learning rate | 3e-5 |
|
| 298 |
+
| batch size | 1 |
|
| 299 |
+
| gradient accumulation steps | 16 |
|
| 300 |
+
| num train epochs | 20 |
|
| 301 |
+
| weight decay | 0.01 |
|
| 302 |
+
|
| 303 |
+
Software environment can be found in mamba/conda [environment export yml
|
| 304 |
+
file](transformers_env.yml). To recreate the environment with conda/mamba, run
|
| 305 |
+
`mamba create -f transformers_env.yml` (replace mamba with conda if you don't
|
| 306 |
+
use mamba).
|
transformers_env.yml
ADDED
|
@@ -0,0 +1,423 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
name: transformers
|
| 2 |
+
channels:
|
| 3 |
+
- pytorch
|
| 4 |
+
- nvidia
|
| 5 |
+
- conda-forge
|
| 6 |
+
dependencies:
|
| 7 |
+
- _libgcc_mutex=0.1=conda_forge
|
| 8 |
+
- _openmp_mutex=4.5=2_kmp_llvm
|
| 9 |
+
- accelerate=0.33.0=pyhd8ed1ab_0
|
| 10 |
+
- aiohappyeyeballs=2.4.0=pyhd8ed1ab_0
|
| 11 |
+
- aiohttp=3.10.5=py311h61187de_0
|
| 12 |
+
- aiosignal=1.3.1=pyhd8ed1ab_0
|
| 13 |
+
- anyio=4.4.0=pyhd8ed1ab_0
|
| 14 |
+
- aom=3.5.0=h27087fc_0
|
| 15 |
+
- argon2-cffi=23.1.0=pyhd8ed1ab_0
|
| 16 |
+
- argon2-cffi-bindings=21.2.0=py311h9ecbd09_5
|
| 17 |
+
- arrow=1.3.0=pyhd8ed1ab_0
|
| 18 |
+
- asttokens=2.4.1=pyhd8ed1ab_0
|
| 19 |
+
- async-lru=2.0.4=pyhd8ed1ab_0
|
| 20 |
+
- atk-1.0=2.38.0=h04ea711_2
|
| 21 |
+
- attrs=24.2.0=pyh71513ae_0
|
| 22 |
+
- audioread=3.0.1=py311h38be061_1
|
| 23 |
+
- aws-c-auth=0.7.22=h96bc93b_2
|
| 24 |
+
- aws-c-cal=0.6.14=h88a6e22_1
|
| 25 |
+
- aws-c-common=0.9.19=h4ab18f5_0
|
| 26 |
+
- aws-c-compression=0.2.18=h83b837d_6
|
| 27 |
+
- aws-c-event-stream=0.4.2=ha47c788_12
|
| 28 |
+
- aws-c-http=0.8.1=h29d6fba_17
|
| 29 |
+
- aws-c-io=0.14.8=h21d4f22_5
|
| 30 |
+
- aws-c-mqtt=0.10.4=h759edc4_4
|
| 31 |
+
- aws-c-s3=0.5.9=h594631b_3
|
| 32 |
+
- aws-c-sdkutils=0.1.16=h83b837d_2
|
| 33 |
+
- aws-checksums=0.1.18=h83b837d_6
|
| 34 |
+
- aws-crt-cpp=0.26.9=he3a8b3b_0
|
| 35 |
+
- aws-sdk-cpp=1.11.329=hba8bd5f_3
|
| 36 |
+
- babel=2.14.0=pyhd8ed1ab_0
|
| 37 |
+
- baumwelch=0.3.9=h434a139_3
|
| 38 |
+
- beautifulsoup4=4.12.3=pyha770c72_0
|
| 39 |
+
- biopython=1.79=py311hd4cff14_3
|
| 40 |
+
- blas=1.0=mkl
|
| 41 |
+
- bleach=6.1.0=pyhd8ed1ab_0
|
| 42 |
+
- brotli=1.1.0=hd590300_1
|
| 43 |
+
- brotli-bin=1.1.0=hd590300_1
|
| 44 |
+
- brotli-python=1.1.0=py311hb755f60_1
|
| 45 |
+
- bzip2=1.0.8=h4bc722e_7
|
| 46 |
+
- c-ares=1.33.0=ha66036c_0
|
| 47 |
+
- ca-certificates=2024.12.14=hbcca054_0
|
| 48 |
+
- cached-property=1.5.2=hd8ed1ab_1
|
| 49 |
+
- cached_property=1.5.2=pyha770c72_1
|
| 50 |
+
- cairo=1.18.0=hebfffa5_3
|
| 51 |
+
- certifi=2024.12.14=pyhd8ed1ab_0
|
| 52 |
+
- cffi=1.17.0=py311ha8e6434_0
|
| 53 |
+
- charset-normalizer=3.3.2=pyhd8ed1ab_0
|
| 54 |
+
- click=8.1.7=unix_pyh707e725_0
|
| 55 |
+
- cloudpickle=3.1.0=pyhd8ed1ab_2
|
| 56 |
+
- colorama=0.4.6=pyhd8ed1ab_0
|
| 57 |
+
- comm=0.2.2=pyhd8ed1ab_0
|
| 58 |
+
- contourpy=1.2.1=py311h9547e67_0
|
| 59 |
+
- cuda-cudart=11.8.89=0
|
| 60 |
+
- cuda-cupti=11.8.87=0
|
| 61 |
+
- cuda-libraries=11.8.0=0
|
| 62 |
+
- cuda-nvrtc=11.8.89=0
|
| 63 |
+
- cuda-nvtx=11.8.86=0
|
| 64 |
+
- cuda-runtime=11.8.0=0
|
| 65 |
+
- cuda-version=12.6=3
|
| 66 |
+
- cycler=0.12.1=pyhd8ed1ab_0
|
| 67 |
+
- cython=3.0.11=py311h55d416d_3
|
| 68 |
+
- dataclassy=1.0.1=pyhd8ed1ab_0
|
| 69 |
+
- datasets=2.21.0=pyhd8ed1ab_0
|
| 70 |
+
- debugpy=1.8.5=py311hfdbb021_1
|
| 71 |
+
- decorator=5.1.1=pyhd8ed1ab_0
|
| 72 |
+
- defusedxml=0.7.1=pyhd8ed1ab_0
|
| 73 |
+
- dill=0.3.8=pyhd8ed1ab_0
|
| 74 |
+
- entrypoints=0.4=pyhd8ed1ab_0
|
| 75 |
+
- exceptiongroup=1.2.2=pyhd8ed1ab_0
|
| 76 |
+
- executing=2.1.0=pyhd8ed1ab_0
|
| 77 |
+
- expat=2.6.2=h59595ed_0
|
| 78 |
+
- ffmpeg=5.1.2=gpl_h8dda1f0_106
|
| 79 |
+
- filelock=3.15.4=pyhd8ed1ab_0
|
| 80 |
+
- font-ttf-dejavu-sans-mono=2.37=hab24e00_0
|
| 81 |
+
- font-ttf-inconsolata=3.000=h77eed37_0
|
| 82 |
+
- font-ttf-source-code-pro=2.038=h77eed37_0
|
| 83 |
+
- font-ttf-ubuntu=0.83=h77eed37_2
|
| 84 |
+
- fontconfig=2.14.2=h14ed4e7_0
|
| 85 |
+
- fonts-conda-ecosystem=1=0
|
| 86 |
+
- fonts-conda-forge=1=0
|
| 87 |
+
- fonttools=4.53.1=py311h61187de_0
|
| 88 |
+
- fqdn=1.5.1=pyhd8ed1ab_0
|
| 89 |
+
- freetype=2.12.1=h267a509_2
|
| 90 |
+
- fribidi=1.0.10=h36c2ea0_0
|
| 91 |
+
- frozenlist=1.4.1=py311h459d7ec_0
|
| 92 |
+
- fsspec=2024.5.0=pyhff2d567_0
|
| 93 |
+
- gdk-pixbuf=2.42.12=hb9ae30d_0
|
| 94 |
+
- gettext=0.22.5=he02047a_3
|
| 95 |
+
- gettext-tools=0.22.5=he02047a_3
|
| 96 |
+
- gflags=2.2.2=he1b5a44_1004
|
| 97 |
+
- glog=0.7.1=hbabe93e_0
|
| 98 |
+
- gmp=6.3.0=hac33072_2
|
| 99 |
+
- gmpy2=2.1.5=py311hc4f1f91_1
|
| 100 |
+
- gnutls=3.7.9=hb077bed_0
|
| 101 |
+
- graphite2=1.3.13=h59595ed_1003
|
| 102 |
+
- graphviz=12.0.0=hba01fac_0
|
| 103 |
+
- greenlet=3.1.1=py311hfdbb021_0
|
| 104 |
+
- gtk2=2.24.33=h6470451_5
|
| 105 |
+
- gts=0.7.6=h977cf35_4
|
| 106 |
+
- h11=0.14.0=pyhd8ed1ab_0
|
| 107 |
+
- h2=4.1.0=pyhd8ed1ab_0
|
| 108 |
+
- harfbuzz=9.0.0=hda332d3_1
|
| 109 |
+
- hdbscan=0.8.38.post1=py311h9f3472d_2
|
| 110 |
+
- hpack=4.0.0=pyh9f0ad1d_0
|
| 111 |
+
- httpcore=1.0.5=pyhd8ed1ab_0
|
| 112 |
+
- httpx=0.27.2=pyhd8ed1ab_0
|
| 113 |
+
- huggingface_hub=0.24.6=pyhd8ed1ab_0
|
| 114 |
+
- hyperframe=6.0.1=pyhd8ed1ab_0
|
| 115 |
+
- icu=75.1=he02047a_0
|
| 116 |
+
- idna=3.7=pyhd8ed1ab_0
|
| 117 |
+
- importlib-metadata=8.4.0=pyha770c72_0
|
| 118 |
+
- importlib_metadata=8.4.0=hd8ed1ab_0
|
| 119 |
+
- importlib_resources=6.4.5=pyhd8ed1ab_0
|
| 120 |
+
- ipykernel=6.29.5=pyh3099207_0
|
| 121 |
+
- ipython=8.27.0=pyh707e725_0
|
| 122 |
+
- ipywidgets=8.1.5=pyhd8ed1ab_0
|
| 123 |
+
- isoduration=20.11.0=pyhd8ed1ab_0
|
| 124 |
+
- jedi=0.19.1=pyhd8ed1ab_0
|
| 125 |
+
- jinja2=3.1.4=pyhd8ed1ab_0
|
| 126 |
+
- joblib=1.4.2=pyhd8ed1ab_0
|
| 127 |
+
- json5=0.9.25=pyhd8ed1ab_0
|
| 128 |
+
- jsonpointer=3.0.0=py311h38be061_1
|
| 129 |
+
- jsonschema=4.23.0=pyhd8ed1ab_0
|
| 130 |
+
- jsonschema-specifications=2023.12.1=pyhd8ed1ab_0
|
| 131 |
+
- jsonschema-with-format-nongpl=4.23.0=hd8ed1ab_0
|
| 132 |
+
- jupyter=1.1.1=pyhd8ed1ab_0
|
| 133 |
+
- jupyter-lsp=2.2.5=pyhd8ed1ab_0
|
| 134 |
+
- jupyter_client=8.6.2=pyhd8ed1ab_0
|
| 135 |
+
- jupyter_console=6.6.3=pyhd8ed1ab_0
|
| 136 |
+
- jupyter_core=5.7.2=py311h38be061_0
|
| 137 |
+
- jupyter_events=0.10.0=pyhd8ed1ab_0
|
| 138 |
+
- jupyter_server=2.14.2=pyhd8ed1ab_0
|
| 139 |
+
- jupyter_server_terminals=0.5.3=pyhd8ed1ab_0
|
| 140 |
+
- jupyterlab=4.2.5=pyhd8ed1ab_0
|
| 141 |
+
- jupyterlab_pygments=0.3.0=pyhd8ed1ab_1
|
| 142 |
+
- jupyterlab_server=2.27.3=pyhd8ed1ab_0
|
| 143 |
+
- jupyterlab_widgets=3.0.13=pyhd8ed1ab_0
|
| 144 |
+
- kaldi=5.5.1112=cpu_hd7b63f8_3
|
| 145 |
+
- kalpy=0.6.7=py311hd18a35c_0
|
| 146 |
+
- keyutils=1.6.1=h166bdaf_0
|
| 147 |
+
- kiwisolver=1.4.5=py311h9547e67_1
|
| 148 |
+
- kneed=0.8.5=pyhd8ed1ab_0
|
| 149 |
+
- krb5=1.21.3=h659f571_0
|
| 150 |
+
- lame=3.100=h166bdaf_1003
|
| 151 |
+
- lazy-loader=0.4=pyhd8ed1ab_1
|
| 152 |
+
- lazy_loader=0.4=pyhd8ed1ab_1
|
| 153 |
+
- lcms2=2.16=hb7c19ff_0
|
| 154 |
+
- ld_impl_linux-64=2.40=hf3520f5_7
|
| 155 |
+
- lerc=4.0.0=h27087fc_0
|
| 156 |
+
- libabseil=20240116.2=cxx17_he02047a_1
|
| 157 |
+
- libarrow=16.1.0=hcb6531f_6_cpu
|
| 158 |
+
- libarrow-acero=16.1.0=hac33072_6_cpu
|
| 159 |
+
- libarrow-dataset=16.1.0=hac33072_6_cpu
|
| 160 |
+
- libarrow-substrait=16.1.0=h7e0c224_6_cpu
|
| 161 |
+
- libasprintf=0.22.5=he8f35ee_3
|
| 162 |
+
- libasprintf-devel=0.22.5=he8f35ee_3
|
| 163 |
+
- libblas=3.9.0=16_linux64_mkl
|
| 164 |
+
- libbrotlicommon=1.1.0=hd590300_1
|
| 165 |
+
- libbrotlidec=1.1.0=hd590300_1
|
| 166 |
+
- libbrotlienc=1.1.0=hd590300_1
|
| 167 |
+
- libcblas=3.9.0=16_linux64_mkl
|
| 168 |
+
- libcrc32c=1.1.2=h9c3ff4c_0
|
| 169 |
+
- libcublas=11.11.3.6=0
|
| 170 |
+
- libcufft=10.9.0.58=0
|
| 171 |
+
- libcufile=1.11.0.15=0
|
| 172 |
+
- libcurand=10.3.7.37=0
|
| 173 |
+
- libcurl=8.8.0=hca28451_1
|
| 174 |
+
- libcusolver=11.4.1.48=0
|
| 175 |
+
- libcusparse=11.7.5.86=0
|
| 176 |
+
- libdeflate=1.21=h4bc722e_0
|
| 177 |
+
- libdrm=2.4.123=hb9d3cd8_0
|
| 178 |
+
- libedit=3.1.20191231=he28a2e2_2
|
| 179 |
+
- libev=4.33=hd590300_2
|
| 180 |
+
- libevent=2.1.12=hf998b51_1
|
| 181 |
+
- libexpat=2.6.2=h59595ed_0
|
| 182 |
+
- libffi=3.4.2=h7f98852_5
|
| 183 |
+
- libflac=1.4.3=h59595ed_0
|
| 184 |
+
- libgcc=14.1.0=h77fa898_1
|
| 185 |
+
- libgcc-ng=14.1.0=h69a702a_1
|
| 186 |
+
- libgd=2.3.3=hd3e95f3_10
|
| 187 |
+
- libgettextpo=0.22.5=he02047a_3
|
| 188 |
+
- libgettextpo-devel=0.22.5=he02047a_3
|
| 189 |
+
- libgfortran=3.0.0=1
|
| 190 |
+
- libgfortran-ng=14.1.0=h69a702a_0
|
| 191 |
+
- libgfortran5=14.1.0=hc5f4f2c_0
|
| 192 |
+
- libglib=2.82.1=h2ff4ddf_0
|
| 193 |
+
- libgoogle-cloud=2.24.0=h2736e30_0
|
| 194 |
+
- libgoogle-cloud-storage=2.24.0=h3d9a0c8_0
|
| 195 |
+
- libgrpc=1.62.2=h15f2491_0
|
| 196 |
+
- libhwloc=2.11.1=default_hecaa2ac_1000
|
| 197 |
+
- libiconv=1.17=hd590300_2
|
| 198 |
+
- libidn2=2.3.7=hd590300_0
|
| 199 |
+
- libjpeg-turbo=3.0.0=hd590300_1
|
| 200 |
+
- liblapack=3.9.0=16_linux64_mkl
|
| 201 |
+
- liblapacke=3.9.0=16_linux64_mkl
|
| 202 |
+
- libllvm14=14.0.6=hcd5def8_4
|
| 203 |
+
- libnghttp2=1.58.0=h47da74e_1
|
| 204 |
+
- libnpp=11.8.0.86=0
|
| 205 |
+
- libnsl=2.0.1=hd590300_0
|
| 206 |
+
- libnvjpeg=11.9.0.86=0
|
| 207 |
+
- libogg=1.3.5=h4ab18f5_0
|
| 208 |
+
- libopus=1.3.1=h7f98852_1
|
| 209 |
+
- libparquet=16.1.0=h6a7eafb_6_cpu
|
| 210 |
+
- libpciaccess=0.18=hd590300_0
|
| 211 |
+
- libpng=1.6.43=h2797004_0
|
| 212 |
+
- libpq=16.4=h2d7952a_2
|
| 213 |
+
- libprotobuf=4.25.3=h08a7969_0
|
| 214 |
+
- libre2-11=2023.09.01=h5a48ba9_2
|
| 215 |
+
- librosa=0.10.2.post1=pyhd8ed1ab_0
|
| 216 |
+
- librsvg=2.58.4=hc0ffecb_0
|
| 217 |
+
- libsndfile=1.2.2=hc60ed4a_1
|
| 218 |
+
- libsodium=1.0.20=h4ab18f5_0
|
| 219 |
+
- libsqlite=3.46.0=hde9e2c9_0
|
| 220 |
+
- libssh2=1.11.0=h0841786_0
|
| 221 |
+
- libstdcxx=14.1.0=hc0a3c3a_1
|
| 222 |
+
- libstdcxx-ng=14.1.0=h4852527_1
|
| 223 |
+
- libtasn1=4.19.0=h166bdaf_0
|
| 224 |
+
- libthrift=0.19.0=hb90f79a_1
|
| 225 |
+
- libtiff=4.7.0=h6565414_0
|
| 226 |
+
- libunistring=0.9.10=h7f98852_0
|
| 227 |
+
- libutf8proc=2.8.0=h166bdaf_0
|
| 228 |
+
- libuuid=2.38.1=h0b41bf4_0
|
| 229 |
+
- libva=2.18.0=h0b41bf4_0
|
| 230 |
+
- libvorbis=1.3.7=h9c3ff4c_0
|
| 231 |
+
- libvpx=1.11.0=h9c3ff4c_3
|
| 232 |
+
- libwebp-base=1.4.0=hd590300_0
|
| 233 |
+
- libxcb=1.17.0=h8a09558_0
|
| 234 |
+
- libxcrypt=4.4.36=hd590300_1
|
| 235 |
+
- libxml2=2.12.7=he7c6b58_4
|
| 236 |
+
- libxslt=1.1.39=h76b75d6_0
|
| 237 |
+
- libzlib=1.3.1=h4ab18f5_1
|
| 238 |
+
- llvm-openmp=15.0.7=h0cdce71_0
|
| 239 |
+
- llvmlite=0.42.0=py311ha6695c7_1
|
| 240 |
+
- lxml=5.3.0=py311hcfaa980_1
|
| 241 |
+
- lz4-c=1.9.4=hcb278e6_0
|
| 242 |
+
- mad=0.15.1b=h9c3ff4c_1
|
| 243 |
+
- markdown-it-py=3.0.0=pyhd8ed1ab_0
|
| 244 |
+
- markupsafe=2.1.5=py311h459d7ec_0
|
| 245 |
+
- matplotlib-base=3.9.2=py311h74b4f7c_0
|
| 246 |
+
- matplotlib-inline=0.1.7=pyhd8ed1ab_0
|
| 247 |
+
- mdurl=0.1.2=pyhd8ed1ab_0
|
| 248 |
+
- mistune=3.0.2=pyhd8ed1ab_0
|
| 249 |
+
- mkl=2022.2.1=h84fe81f_16997
|
| 250 |
+
- montreal-forced-aligner=3.1.3=pyhd8ed1ab_0
|
| 251 |
+
- mpc=1.3.1=hfe3b2da_0
|
| 252 |
+
- mpfr=4.2.1=h38ae2d0_2
|
| 253 |
+
- mpg123=1.32.6=h59595ed_0
|
| 254 |
+
- mpmath=1.3.0=pyhd8ed1ab_0
|
| 255 |
+
- msgpack-python=1.0.8=py311h52f7536_0
|
| 256 |
+
- multidict=6.0.5=py311h459d7ec_0
|
| 257 |
+
- multiprocess=0.70.16=py311h459d7ec_0
|
| 258 |
+
- munkres=1.1.4=pyh9f0ad1d_0
|
| 259 |
+
- nbclient=0.10.0=pyhd8ed1ab_0
|
| 260 |
+
- nbconvert-core=7.16.4=pyhd8ed1ab_1
|
| 261 |
+
- nbformat=5.10.4=pyhd8ed1ab_0
|
| 262 |
+
- ncurses=6.5=h59595ed_0
|
| 263 |
+
- nest-asyncio=1.6.0=pyhd8ed1ab_0
|
| 264 |
+
- nettle=3.9.1=h7ab15ed_0
|
| 265 |
+
- networkx=3.3=pyhd8ed1ab_1
|
| 266 |
+
- ngram=1.3.16=h434a139_1
|
| 267 |
+
- notebook=7.2.2=pyhd8ed1ab_0
|
| 268 |
+
- notebook-shim=0.2.4=pyhd8ed1ab_0
|
| 269 |
+
- numba=0.59.1=py311h96b013e_0
|
| 270 |
+
- numpy=1.26.4=py311h64a7726_0
|
| 271 |
+
- openfst=1.8.3=h00ab1b0_2
|
| 272 |
+
- openh264=2.3.1=hcb278e6_2
|
| 273 |
+
- openjpeg=2.5.2=h488ebb8_0
|
| 274 |
+
- openssl=3.4.0=hb9d3cd8_0
|
| 275 |
+
- orc=2.0.1=h17fec99_1
|
| 276 |
+
- overrides=7.7.0=pyhd8ed1ab_0
|
| 277 |
+
- p11-kit=0.24.1=hc5aa10d_0
|
| 278 |
+
- packaging=24.1=pyhd8ed1ab_0
|
| 279 |
+
- pandas=2.2.2=py311h14de704_1
|
| 280 |
+
- pandocfilters=1.5.0=pyhd8ed1ab_0
|
| 281 |
+
- pango=1.54.0=h4c5309f_1
|
| 282 |
+
- parso=0.8.4=pyhd8ed1ab_0
|
| 283 |
+
- pcre2=10.44=hba22ea6_2
|
| 284 |
+
- pexpect=4.9.0=pyhd8ed1ab_0
|
| 285 |
+
- pgvector=0.7.4=h2f8f9d6_0
|
| 286 |
+
- pgvector-python=0.3.4=pyh1ff3077_0
|
| 287 |
+
- pickleshare=0.7.5=py_1003
|
| 288 |
+
- pillow=10.4.0=py311h4aec55e_1
|
| 289 |
+
- pip=24.2=pyhd8ed1ab_0
|
| 290 |
+
- pixman=0.43.2=h59595ed_0
|
| 291 |
+
- pkgutil-resolve-name=1.3.10=pyhd8ed1ab_1
|
| 292 |
+
- platformdirs=4.2.2=pyhd8ed1ab_0
|
| 293 |
+
- polars=1.17.1=py311h03f6b34_0
|
| 294 |
+
- pooch=1.8.2=pyhd8ed1ab_0
|
| 295 |
+
- postgresql=16.4=hb2eb5c0_2
|
| 296 |
+
- praatio=6.0.0=pyhd8ed1ab_0
|
| 297 |
+
- prometheus_client=0.20.0=pyhd8ed1ab_0
|
| 298 |
+
- prompt-toolkit=3.0.47=pyha770c72_0
|
| 299 |
+
- prompt_toolkit=3.0.47=hd8ed1ab_0
|
| 300 |
+
- psutil=6.0.0=py311h331c9d8_0
|
| 301 |
+
- psycopg2=2.9.9=py311h03dec38_0
|
| 302 |
+
- pthread-stubs=0.4=h36c2ea0_1001
|
| 303 |
+
- ptyprocess=0.7.0=pyhd3deb0d_0
|
| 304 |
+
- pure_eval=0.2.3=pyhd8ed1ab_0
|
| 305 |
+
- pyarrow=16.1.0=py311h781c19f_1
|
| 306 |
+
- pyarrow-core=16.1.0=py311h8e2c35d_1_cpu
|
| 307 |
+
- pyarrow-hotfix=0.6=pyhd8ed1ab_0
|
| 308 |
+
- pycparser=2.22=pyhd8ed1ab_0
|
| 309 |
+
- pydub=0.25.1=pyhd8ed1ab_0
|
| 310 |
+
- pygments=2.18.0=pyhd8ed1ab_0
|
| 311 |
+
- pynini=2.1.6=py311h9547e67_0
|
| 312 |
+
- pynvml=11.4.1=pyhd8ed1ab_0
|
| 313 |
+
- pyparsing=3.1.2=pyhd8ed1ab_0
|
| 314 |
+
- pysocks=1.7.1=pyha2e5f31_6
|
| 315 |
+
- pysoundfile=0.12.1=pyhd8ed1ab_0
|
| 316 |
+
- python=3.11.9=hb806964_0_cpython
|
| 317 |
+
- python-dateutil=2.9.0=pyhd8ed1ab_0
|
| 318 |
+
- python-fastjsonschema=2.20.0=pyhd8ed1ab_0
|
| 319 |
+
- python-json-logger=2.0.7=pyhd8ed1ab_0
|
| 320 |
+
- python-tzdata=2024.1=pyhd8ed1ab_0
|
| 321 |
+
- python-xxhash=3.5.0=py311h61187de_0
|
| 322 |
+
- python_abi=3.11=5_cp311
|
| 323 |
+
- pytorch=2.4.0=py3.11_cuda11.8_cudnn9.1.0_0
|
| 324 |
+
- pytorch-cuda=11.8=h7e8668a_5
|
| 325 |
+
- pytorch-mutex=1.0=cuda
|
| 326 |
+
- pytz=2024.1=pyhd8ed1ab_0
|
| 327 |
+
- pyyaml=6.0.2=py311h61187de_0
|
| 328 |
+
- pyzmq=26.2.0=py311h7deb3e3_2
|
| 329 |
+
- qhull=2020.2=h434a139_5
|
| 330 |
+
- re2=2023.09.01=h7f4b329_2
|
| 331 |
+
- readline=8.2=h8228510_1
|
| 332 |
+
- referencing=0.35.1=pyhd8ed1ab_0
|
| 333 |
+
- regex=2024.7.24=py311h61187de_0
|
| 334 |
+
- requests=2.32.3=pyhd8ed1ab_0
|
| 335 |
+
- rfc3339-validator=0.1.4=pyhd8ed1ab_0
|
| 336 |
+
- rfc3986-validator=0.1.1=pyh9f0ad1d_0
|
| 337 |
+
- rich=13.8.1=pyhd8ed1ab_0
|
| 338 |
+
- rich-click=1.8.3=pyhd8ed1ab_0
|
| 339 |
+
- rpds-py=0.20.0=py311h9e33e62_1
|
| 340 |
+
- s2n=1.4.15=he19d79f_0
|
| 341 |
+
- safetensors=0.4.4=py311hb3a8bbb_0
|
| 342 |
+
- scalene=1.5.41=py311h4332511_0
|
| 343 |
+
- scikit-learn=1.2.2=py311hc009520_2
|
| 344 |
+
- scipy=1.14.0=py311h0a5b728_2
|
| 345 |
+
- send2trash=1.8.3=pyh0d859eb_0
|
| 346 |
+
- setuptools=72.2.0=pyhd8ed1ab_0
|
| 347 |
+
- six=1.16.0=pyh6c4a22f_0
|
| 348 |
+
- snappy=1.2.1=ha2e4443_0
|
| 349 |
+
- sniffio=1.3.1=pyhd8ed1ab_0
|
| 350 |
+
- soupsieve=2.5=pyhd8ed1ab_1
|
| 351 |
+
- sox=14.4.2=h32e7c5b_1019
|
| 352 |
+
- soxr=0.1.3=h0b41bf4_3
|
| 353 |
+
- soxr-python=0.4.0=py311h07ce7c0_0
|
| 354 |
+
- sqlalchemy=2.0.35=py311h9ecbd09_0
|
| 355 |
+
- sqlite=3.46.0=h6d4b2fc_0
|
| 356 |
+
- stack_data=0.6.2=pyhd8ed1ab_0
|
| 357 |
+
- svt-av1=1.4.1=hcb278e6_0
|
| 358 |
+
- sympy=1.13.2=pypyh2585a3b_103
|
| 359 |
+
- tbb=2021.12.0=h434a139_3
|
| 360 |
+
- terminado=0.18.1=pyh0d859eb_0
|
| 361 |
+
- threadpoolctl=3.5.0=pyhc1e730c_0
|
| 362 |
+
- tinycss2=1.3.0=pyhd8ed1ab_0
|
| 363 |
+
- tk=8.6.13=noxft_h4845f30_101
|
| 364 |
+
- tokenizers=0.19.1=py311h6640629_0
|
| 365 |
+
- tomli=2.0.1=pyhd8ed1ab_0
|
| 366 |
+
- torchaudio=2.4.0=py311_cu118
|
| 367 |
+
- torchtriton=3.0.0=py311
|
| 368 |
+
- torchvision=0.19.0=py311_cu118
|
| 369 |
+
- tornado=6.4.1=py311h9ecbd09_1
|
| 370 |
+
- tqdm=4.66.5=pyhd8ed1ab_0
|
| 371 |
+
- traitlets=5.14.3=pyhd8ed1ab_0
|
| 372 |
+
- transformers=4.44.1=pyhd8ed1ab_0
|
| 373 |
+
- types-python-dateutil=2.9.0.20240906=pyhd8ed1ab_0
|
| 374 |
+
- typing-extensions=4.12.2=hd8ed1ab_0
|
| 375 |
+
- typing_extensions=4.12.2=pyha770c72_0
|
| 376 |
+
- typing_utils=0.1.0=pyhd8ed1ab_0
|
| 377 |
+
- tzcode=2024b=hb9d3cd8_0
|
| 378 |
+
- tzdata=2024a=h0c530f3_0
|
| 379 |
+
- uri-template=1.3.0=pyhd8ed1ab_0
|
| 380 |
+
- urllib3=2.2.2=pyhd8ed1ab_1
|
| 381 |
+
- wcwidth=0.2.13=pyhd8ed1ab_0
|
| 382 |
+
- webcolors=24.8.0=pyhd8ed1ab_0
|
| 383 |
+
- webencodings=0.5.1=pyhd8ed1ab_2
|
| 384 |
+
- websocket-client=1.8.0=pyhd8ed1ab_0
|
| 385 |
+
- wheel=0.44.0=pyhd8ed1ab_0
|
| 386 |
+
- widgetsnbextension=4.0.13=pyhd8ed1ab_0
|
| 387 |
+
- x264=1!164.3095=h166bdaf_2
|
| 388 |
+
- x265=3.5=h924138e_3
|
| 389 |
+
- xorg-fixesproto=5.0=h7f98852_1002
|
| 390 |
+
- xorg-kbproto=1.0.7=h7f98852_1002
|
| 391 |
+
- xorg-libice=1.1.1=hb9d3cd8_1
|
| 392 |
+
- xorg-libsm=1.2.4=he73a12e_1
|
| 393 |
+
- xorg-libx11=1.8.10=h4f16b4b_0
|
| 394 |
+
- xorg-libxau=1.0.11=hd590300_0
|
| 395 |
+
- xorg-libxdmcp=1.1.3=h7f98852_0
|
| 396 |
+
- xorg-libxext=1.3.4=h0b41bf4_2
|
| 397 |
+
- xorg-libxfixes=5.0.3=h7f98852_1004
|
| 398 |
+
- xorg-libxrender=0.9.11=hb9d3cd8_1
|
| 399 |
+
- xorg-xextproto=7.3.0=h0b41bf4_1003
|
| 400 |
+
- xorg-xorgproto=2024.1=hb9d3cd8_1
|
| 401 |
+
- xorg-xproto=7.0.31=h7f98852_1007
|
| 402 |
+
- xxhash=0.8.2=hd590300_0
|
| 403 |
+
- xz=5.2.6=h166bdaf_0
|
| 404 |
+
- yaml=0.2.5=h7f98852_2
|
| 405 |
+
- yarl=1.9.4=py311h459d7ec_0
|
| 406 |
+
- zeromq=4.3.5=ha4adb4c_5
|
| 407 |
+
- zip=3.0=hd590300_3
|
| 408 |
+
- zipp=3.20.0=pyhd8ed1ab_0
|
| 409 |
+
- zlib=1.3.1=h4ab18f5_1
|
| 410 |
+
- zstandard=0.23.0=py311h5cd10c7_0
|
| 411 |
+
- zstd=1.5.6=ha6fb4c9_0
|
| 412 |
+
- pip:
|
| 413 |
+
- annotated-types==0.7.0
|
| 414 |
+
- bokeh==3.6.2
|
| 415 |
+
- fastapi==0.112.1
|
| 416 |
+
- line-profiler==4.1.3
|
| 417 |
+
- pydantic==2.8.2
|
| 418 |
+
- pydantic-core==2.20.1
|
| 419 |
+
- starlette==0.38.2
|
| 420 |
+
- transliterate==1.10.2
|
| 421 |
+
- uvicorn==0.30.6
|
| 422 |
+
- xyzservices==2024.9.0
|
| 423 |
+
prefix: /home/peterr/mambaforge/envs/transformers
|