5roop's picture
Added use example
5e951a4
|
raw
history blame
2.23 kB

bcms-bertic-frenk-hate

Text classification model based on classla/bcms-bertic and fine-tuned on the FRANK dataset comprising of LGBT and migrant hatespeech. Only the Croatian subset of the data was used for fine-tuning and the dataset has been relabeled for binary classification (offensive or acceptable).

Fine-tuning hyperparameters

Fine-tuning was performed with simpletransformers. Beforehand a brief hyperparameter optimisation was performed and the presumed optimal hyperparameters are:


model_args = {
        "num_train_epochs": 12,
        "learning_rate": 1e-5,
        "train_batch_size": 74}

Performance

The same pipeline was run with two other models and with the same dataset. Accuracy and macro F1 score were recorded for each of the 6 fine-tuning sessions and post festum analyzed.

model average accuracy average macro F1
bcms-bertic-frenk-hate 0.8313 0.8219
EMBEDDIA/crosloengual-bert 0.8054 0.796
xlm-roberta-base 0.7175 0.7049

From recorded accuracies and macro F1 scores p-values were also calculated:

Comparison with crosloengual-bert:

test accuracy p-value macro F1 p-value
Wilcoxon 0.00781 0.00781
Mann Whithney 0.00108 0.00108
Student t-test 2.43e-10 1.27e-10

Comparison with xlm-roberta-base:

test accuracy p-value macro F1 p-value
Wilcoxon 0.00781 0.00781
Mann Whithney 0.00107 0.00108
Student t-test 4.83e-11 5.61e-11

Use examples

from simpletransformers.classification import ClassificationModel
model_args = {
        "num_train_epochs": 12,
        "learning_rate": 1e-5,
        "train_batch_size": 74}

model = ClassificationModel(
    "bert", "5roop/bcms-bertic-frenk-hate", use_cuda=True,
    args=model_args
    
)

predictions, logit_output = model.predict(['Ne odbacujem da će RH primiti još migranata iz Afganistana, no neće biti novog vala',
                                           "Potpredsjednik Vlade i ministar branitelja Tomo Medved komentirao je Vladine planove za zakonsku zabranu pozdrava 'za dom spremni' "])
predictions
### Output:
### array([0, 0])