File size: 23,775 Bytes
439aaa0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
import copy
from collections import defaultdict
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Tuple, Union

from huggingface_hub.utils import yaml_dump

from .utils.logging import get_logger


logger = get_logger(__name__)


@dataclass
class EvalResult:
    """
    Flattened representation of individual evaluation results found in model-index of Model Cards.

    For more information on the model-index spec, see https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1.

    Args:
        task_type (`str`):
            The task identifier. Example: "image-classification".
        dataset_type (`str`):
            The dataset identifier. Example: "common_voice". Use dataset id from https://hf.co/datasets.
        dataset_name (`str`):
            A pretty name for the dataset. Example: "Common Voice (French)".
        metric_type (`str`):
            The metric identifier. Example: "wer". Use metric id from https://hf.co/metrics.
        metric_value (`Any`):
            The metric value. Example: 0.9 or "20.0 ± 1.2".
        task_name (`str`, *optional*):
            A pretty name for the task. Example: "Speech Recognition".
        dataset_config (`str`, *optional*):
            The name of the dataset configuration used in `load_dataset()`.
            Example: fr in `load_dataset("common_voice", "fr")`. See the `datasets` docs for more info:
            https://hf.co/docs/datasets/package_reference/loading_methods#datasets.load_dataset.name
        dataset_split (`str`, *optional*):
            The split used in `load_dataset()`. Example: "test".
        dataset_revision (`str`, *optional*):
            The revision (AKA Git Sha) of the dataset used in `load_dataset()`.
            Example: 5503434ddd753f426f4b38109466949a1217c2bb
        dataset_args (`Dict[str, Any]`, *optional*):
            The arguments passed during `Metric.compute()`. Example for `bleu`: `{"max_order": 4}`
        metric_name (`str`, *optional*):
            A pretty name for the metric. Example: "Test WER".
        metric_config (`str`, *optional*):
            The name of the metric configuration used in `load_metric()`.
            Example: bleurt-large-512 in `load_metric("bleurt", "bleurt-large-512")`.
            See the `datasets` docs for more info: https://huggingface.co/docs/datasets/v2.1.0/en/loading#load-configurations
        metric_args (`Dict[str, Any]`, *optional*):
            The arguments passed during `Metric.compute()`. Example for `bleu`: max_order: 4
        verified (`bool`, *optional*):
            Indicates whether the metrics originate from Hugging Face's [evaluation service](https://huggingface.co/spaces/autoevaluate/model-evaluator) or not. Automatically computed by Hugging Face, do not set.
        verify_token (`str`, *optional*):
            A JSON Web Token that is used to verify whether the metrics originate from Hugging Face's [evaluation service](https://huggingface.co/spaces/autoevaluate/model-evaluator) or not.
    """

    # Required

    # The task identifier
    # Example: automatic-speech-recognition
    task_type: str

    # The dataset identifier
    # Example: common_voice. Use dataset id from https://hf.co/datasets
    dataset_type: str

    # A pretty name for the dataset.
    # Example: Common Voice (French)
    dataset_name: str

    # The metric identifier
    # Example: wer. Use metric id from https://hf.co/metrics
    metric_type: str

    # Value of the metric.
    # Example: 20.0 or "20.0 ± 1.2"
    metric_value: Any

    # Optional

    # A pretty name for the task.
    # Example: Speech Recognition
    task_name: Optional[str] = None

    # The name of the dataset configuration used in `load_dataset()`.
    # Example: fr in `load_dataset("common_voice", "fr")`.
    # See the `datasets` docs for more info:
    # https://huggingface.co/docs/datasets/package_reference/loading_methods#datasets.load_dataset.name
    dataset_config: Optional[str] = None

    # The split used in `load_dataset()`.
    # Example: test
    dataset_split: Optional[str] = None

    # The revision (AKA Git Sha) of the dataset used in `load_dataset()`.
    # Example: 5503434ddd753f426f4b38109466949a1217c2bb
    dataset_revision: Optional[str] = None

    # The arguments passed during `Metric.compute()`.
    # Example for `bleu`: max_order: 4
    dataset_args: Optional[Dict[str, Any]] = None

    # A pretty name for the metric.
    # Example: Test WER
    metric_name: Optional[str] = None

    # The name of the metric configuration used in `load_metric()`.
    # Example: bleurt-large-512 in `load_metric("bleurt", "bleurt-large-512")`.
    # See the `datasets` docs for more info: https://huggingface.co/docs/datasets/v2.1.0/en/loading#load-configurations
    metric_config: Optional[str] = None

    # The arguments passed during `Metric.compute()`.
    # Example for `bleu`: max_order: 4
    metric_args: Optional[Dict[str, Any]] = None

    # Indicates whether the metrics originate from Hugging Face's [evaluation service](https://huggingface.co/spaces/autoevaluate/model-evaluator) or not. Automatically computed by Hugging Face, do not set.
    verified: Optional[bool] = None

    # A JSON Web Token that is used to verify whether the metrics originate from Hugging Face's [evaluation service](https://huggingface.co/spaces/autoevaluate/model-evaluator) or not.
    verify_token: Optional[str] = None

    def is_equal_except_value(self, other: "EvalResult") -> bool:
        """
        Return True if `self` and `other` describe exactly the same metric but with a
        different value.
        """
        for key, _ in self.__dict__.items():
            if key == "metric_value":
                continue
            if getattr(self, key) != getattr(other, key):
                return False
        return True


@dataclass
class CardData:
    def __init__(self, **kwargs):
        self.__dict__.update(kwargs)

    def to_dict(self) -> Dict[str, Any]:
        """Converts CardData to a dict.

        Returns:
            `dict`: CardData represented as a dictionary ready to be dumped to a YAML
            block for inclusion in a README.md file.
        """

        data_dict = copy.deepcopy(self.__dict__)
        self._to_dict(data_dict)
        return _remove_none(data_dict)

    def _to_dict(self, data_dict):
        """Use this method in child classes to alter the dict representation of the data. Alter the dict in-place.

        Args:
            data_dict (`dict`): The raw dict representation of the card data.
        """
        pass

    def to_yaml(self, line_break=None) -> str:
        """Dumps CardData to a YAML block for inclusion in a README.md file.

        Args:
            line_break (str, *optional*):
                The line break to use when dumping to yaml.

        Returns:
            `str`: CardData represented as a YAML block.
        """
        return yaml_dump(self.to_dict(), sort_keys=False, line_break=line_break).strip()

    def __repr__(self):
        return self.to_yaml()


class ModelCardData(CardData):
    """Model Card Metadata that is used by Hugging Face Hub when included at the top of your README.md

    Args:
        language (`Union[str, List[str]]`, *optional*):
            Language of model's training data or metadata. It must be an ISO 639-1, 639-2 or
            639-3 code (two/three letters), or a special value like "code", "multilingual". Defaults to `None`.
        license (`str`, *optional*):
            License of this model. Example: apache-2.0 or any license from
            https://huggingface.co/docs/hub/repositories-licenses. Defaults to None.
        library_name (`str`, *optional*):
            Name of library used by this model. Example: keras or any library from
            https://github.com/huggingface/hub-docs/blob/main/js/src/lib/interfaces/Libraries.ts.
            Defaults to None.
        tags (`List[str]`, *optional*):
            List of tags to add to your model that can be used when filtering on the Hugging
            Face Hub. Defaults to None.
        datasets (`Union[str, List[str]]`, *optional*):
            Dataset or list of datasets that were used to train this model. Should be a dataset ID
            found on https://hf.co/datasets. Defaults to None.
        metrics (`Union[str, List[str]]`, *optional*):
            List of metrics used to evaluate this model. Should be a metric name that can be found
            at https://hf.co/metrics. Example: 'accuracy'. Defaults to None.
        eval_results (`Union[List[EvalResult], EvalResult]`, *optional*):
            List of `huggingface_hub.EvalResult` that define evaluation results of the model. If provided,
            `model_name` is used to as a name on PapersWithCode's leaderboards. Defaults to `None`.
        model_name (`str`, *optional*):
            A name for this model. It is used along with
            `eval_results` to construct the `model-index` within the card's metadata. The name
            you supply here is what will be used on PapersWithCode's leaderboards. If None is provided
            then the repo name is used as a default. Defaults to None.
        kwargs (`dict`, *optional*):
            Additional metadata that will be added to the model card. Defaults to None.

    Example:
        ```python
        >>> from huggingface_hub import ModelCardData
        >>> card_data = ModelCardData(
        ...     language="en",
        ...     license="mit",
        ...     library_name="timm",
        ...     tags=['image-classification', 'resnet'],
        ... )
        >>> card_data.to_dict()
        {'language': 'en', 'license': 'mit', 'library_name': 'timm', 'tags': ['image-classification', 'resnet']}

        ```
    """

    def __init__(
        self,
        *,
        language: Optional[Union[str, List[str]]] = None,
        license: Optional[str] = None,
        library_name: Optional[str] = None,
        tags: Optional[List[str]] = None,
        datasets: Optional[Union[str, List[str]]] = None,
        metrics: Optional[Union[str, List[str]]] = None,
        eval_results: Optional[List[EvalResult]] = None,
        model_name: Optional[str] = None,
        **kwargs,
    ):
        self.language = language
        self.license = license
        self.library_name = library_name
        self.tags = tags
        self.datasets = datasets
        self.metrics = metrics
        self.eval_results = eval_results
        self.model_name = model_name

        model_index = kwargs.pop("model-index", None)
        if model_index:
            try:
                model_name, eval_results = model_index_to_eval_results(model_index)
                self.model_name = model_name
                self.eval_results = eval_results
            except KeyError:
                logger.warning(
                    "Invalid model-index. Not loading eval results into CardData."
                )

        super().__init__(**kwargs)

        if self.eval_results:
            if type(self.eval_results) == EvalResult:
                self.eval_results = [self.eval_results]
            if self.model_name is None:
                raise ValueError(
                    "Passing `eval_results` requires `model_name` to be set."
                )

    def _to_dict(self, data_dict):
        """Format the internal data dict. In this case, we convert eval results to a valid model index"""
        if self.eval_results is not None:
            data_dict["model-index"] = eval_results_to_model_index(
                self.model_name, self.eval_results
            )
            del data_dict["eval_results"], data_dict["model_name"]


class DatasetCardData(CardData):
    """Dataset Card Metadata that is used by Hugging Face Hub when included at the top of your README.md

    Args:
        language (`Union[str, List[str]]`, *optional*):
            Language of dataset's data or metadata. It must be an ISO 639-1, 639-2 or
            639-3 code (two/three letters), or a special value like "code", "multilingual".
        license (`Union[str, List[str]]`, *optional*):
            License(s) of this dataset. Example: apache-2.0 or any license from
            https://huggingface.co/docs/hub/repositories-licenses.
        annotations_creators (`Union[str, List[str]]`, *optional*):
            How the annotations for the dataset were created.
            Options are: 'found', 'crowdsourced', 'expert-generated', 'machine-generated', 'no-annotation', 'other'.
        language_creators (`Union[str, List[str]]`, *optional*):
            How the text-based data in the dataset was created.
            Options are: 'found', 'crowdsourced', 'expert-generated', 'machine-generated', 'other'
        multilinguality (`Union[str, List[str]]`, *optional*):
            Whether the dataset is multilingual.
            Options are: 'monolingual', 'multilingual', 'translation', 'other'.
        size_categories (`Union[str, List[str]]`, *optional*):
            The number of examples in the dataset. Options are: 'n<1K', '1K<n<10K', '10K<n<100K',
            '100K<n<1M', '1M<n<10M', '10M<n<100M', '100M<n<1B', '1B<n<10B', '10B<n<100B', '100B<n<1T', 'n>1T', and 'other'.
        source_datasets (`Union[str, List[str]]`, *optional*):
            Indicates whether the dataset is an original dataset or extended from another existing dataset.
            Options are: 'original' and 'extended'.
        task_categories (`Union[str, List[str]]`, *optional*):
            What categories of task does the dataset support?
        task_ids (`Union[str, List[str]]`, *optional*):
            What specific tasks does the dataset support?
        paperswithcode_id (`str`, *optional*):
            ID of the dataset on PapersWithCode.
        pretty_name (`str`, *optional*):
            A more human-readable name for the dataset. (ex. "Cats vs. Dogs")
        train_eval_index (`Dict`, *optional*):
            A dictionary that describes the necessary spec for doing evaluation on the Hub.
            If not provided, it will be gathered from the 'train-eval-index' key of the kwargs.
        configs (`Union[str, List[str]]`, *optional*):
            A list of the available dataset configs for the dataset.
    """

    def __init__(
        self,
        *,
        language: Optional[Union[str, List[str]]] = None,
        license: Optional[Union[str, List[str]]] = None,
        annotations_creators: Optional[Union[str, List[str]]] = None,
        language_creators: Optional[Union[str, List[str]]] = None,
        multilinguality: Optional[Union[str, List[str]]] = None,
        size_categories: Optional[Union[str, List[str]]] = None,
        source_datasets: Optional[Union[str, List[str]]] = None,
        task_categories: Optional[Union[str, List[str]]] = None,
        task_ids: Optional[Union[str, List[str]]] = None,
        paperswithcode_id: Optional[str] = None,
        pretty_name: Optional[str] = None,
        train_eval_index: Optional[Dict] = None,
        configs: Optional[Union[str, List[str]]] = None,
        **kwargs,
    ):
        self.annotations_creators = annotations_creators
        self.language_creators = language_creators
        self.language = language
        self.license = license
        self.multilinguality = multilinguality
        self.size_categories = size_categories
        self.source_datasets = source_datasets
        self.task_categories = task_categories
        self.task_ids = task_ids
        self.paperswithcode_id = paperswithcode_id
        self.pretty_name = pretty_name
        self.configs = configs

        # TODO - maybe handle this similarly to EvalResult?
        self.train_eval_index = train_eval_index or kwargs.pop("train-eval-index", None)
        super().__init__(**kwargs)

    def _to_dict(self, data_dict):
        data_dict["train-eval-index"] = data_dict.pop("train_eval_index")


def model_index_to_eval_results(
    model_index: List[Dict[str, Any]]
) -> Tuple[str, List[EvalResult]]:
    """Takes in a model index and returns the model name and a list of `huggingface_hub.EvalResult` objects.

    A detailed spec of the model index can be found here:
    https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1

    Args:
        model_index (`List[Dict[str, Any]]`):
            A model index data structure, likely coming from a README.md file on the
            Hugging Face Hub.

    Returns:
        model_name (`str`):
            The name of the model as found in the model index. This is used as the
            identifier for the model on leaderboards like PapersWithCode.
        eval_results (`List[EvalResult]`):
            A list of `huggingface_hub.EvalResult` objects containing the metrics
            reported in the provided model_index.

    Example:
        ```python
        >>> from huggingface_hub.repocard_data import model_index_to_eval_results
        >>> # Define a minimal model index
        >>> model_index = [
        ...     {
        ...         "name": "my-cool-model",
        ...         "results": [
        ...             {
        ...                 "task": {
        ...                     "type": "image-classification"
        ...                 },
        ...                 "dataset": {
        ...                     "type": "beans",
        ...                     "name": "Beans"
        ...                 },
        ...                 "metrics": [
        ...                     {
        ...                         "type": "accuracy",
        ...                         "value": 0.9
        ...                     }
        ...                 ]
        ...             }
        ...         ]
        ...     }
        ... ]
        >>> model_name, eval_results = model_index_to_eval_results(model_index)
        >>> model_name
        'my-cool-model'
        >>> eval_results[0].task_type
        'image-classification'
        >>> eval_results[0].metric_type
        'accuracy'

        ```
    """

    eval_results = []
    for elem in model_index:
        name = elem["name"]
        results = elem["results"]
        for result in results:
            task_type = result["task"]["type"]
            task_name = result["task"].get("name")
            dataset_type = result["dataset"]["type"]
            dataset_name = result["dataset"]["name"]
            dataset_config = result["dataset"].get("config")
            dataset_split = result["dataset"].get("split")
            dataset_revision = result["dataset"].get("revision")
            dataset_args = result["dataset"].get("args")

            for metric in result["metrics"]:
                metric_type = metric["type"]
                metric_value = metric["value"]
                metric_name = metric.get("name")
                metric_args = metric.get("args")
                metric_config = metric.get("config")
                verified = metric.get("verified")
                verify_token = metric.get("verifyToken")

                eval_result = EvalResult(
                    task_type=task_type,  # Required
                    dataset_type=dataset_type,  # Required
                    dataset_name=dataset_name,  # Required
                    metric_type=metric_type,  # Required
                    metric_value=metric_value,  # Required
                    task_name=task_name,
                    dataset_config=dataset_config,
                    dataset_split=dataset_split,
                    dataset_revision=dataset_revision,
                    dataset_args=dataset_args,
                    metric_name=metric_name,
                    metric_args=metric_args,
                    metric_config=metric_config,
                    verified=verified,
                    verify_token=verify_token,
                )
                eval_results.append(eval_result)
    return name, eval_results


def _remove_none(obj):
    """
    Recursively remove `None` values from a dict. Borrowed from: https://stackoverflow.com/a/20558778
    """
    if isinstance(obj, (list, tuple, set)):
        return type(obj)(_remove_none(x) for x in obj if x is not None)
    elif isinstance(obj, dict):
        return type(obj)(
            (_remove_none(k), _remove_none(v))
            for k, v in obj.items()
            if k is not None and v is not None
        )
    else:
        return obj


def eval_results_to_model_index(
    model_name: str, eval_results: List[EvalResult]
) -> List[Dict[str, Any]]:
    """Takes in given model name and list of `huggingface_hub.EvalResult` and returns a
    valid model-index that will be compatible with the format expected by the
    Hugging Face Hub.

    Args:
        model_name (`str`):
            Name of the model (ex. "my-cool-model"). This is used as the identifier
            for the model on leaderboards like PapersWithCode.
        eval_results (`List[EvalResult]`):
            List of `huggingface_hub.EvalResult` objects containing the metrics to be
            reported in the model-index.

    Returns:
        model_index (`List[Dict[str, Any]]`): The eval_results converted to a model-index.

    Example:
        ```python
        >>> from huggingface_hub.repocard_data import eval_results_to_model_index, EvalResult
        >>> # Define minimal eval_results
        >>> eval_results = [
        ...     EvalResult(
        ...         task_type="image-classification",  # Required
        ...         dataset_type="beans",  # Required
        ...         dataset_name="Beans",  # Required
        ...         metric_type="accuracy",  # Required
        ...         metric_value=0.9,  # Required
        ...     )
        ... ]
        >>> eval_results_to_model_index("my-cool-model", eval_results)
        [{'name': 'my-cool-model', 'results': [{'task': {'type': 'image-classification'}, 'dataset': {'name': 'Beans', 'type': 'beans'}, 'metrics': [{'type': 'accuracy', 'value': 0.9}]}]}]

        ```
    """

    # Metrics are reported on a unique task-and-dataset basis.
    # Here, we make a map of those pairs and the associated EvalResults.
    task_and_ds_types_map = defaultdict(list)
    for eval_result in eval_results:
        task_and_ds_pair = (eval_result.task_type, eval_result.dataset_type)
        task_and_ds_types_map[task_and_ds_pair].append(eval_result)

    # Use the map from above to generate the model index data.
    model_index_data = []
    for (task_type, dataset_type), results in task_and_ds_types_map.items():
        data = {
            "task": {
                "type": task_type,
                "name": results[0].task_name,
            },
            "dataset": {
                "name": results[0].dataset_name,
                "type": dataset_type,
                "config": results[0].dataset_config,
                "split": results[0].dataset_split,
                "revision": results[0].dataset_revision,
                "args": results[0].dataset_args,
            },
            "metrics": [
                {
                    "type": result.metric_type,
                    "value": result.metric_value,
                    "name": result.metric_name,
                    "config": result.metric_config,
                    "args": result.metric_args,
                    "verified": result.verified,
                    "verifyToken": result.verify_token,
                }
                for result in results
            ],
        }
        model_index_data.append(data)

    # TODO - Check if there cases where this list is longer than one?
    # Finally, the model index itself is list of dicts.
    model_index = [
        {
            "name": model_name,
            "results": model_index_data,
        }
    ]
    return _remove_none(model_index)