File size: 1,269 Bytes
32e9948
 
ef1b192
32e9948
 
ef1b192
 
 
 
32e9948
 
 
78b5eb1
 
 
 
 
 
 
 
ef1b192
32e9948
 
 
ef1b192
32e9948
78b5eb1
 
 
 
 
 
 
 
 
e7bdda6
78b5eb1
 
 
e7bdda6
78b5eb1
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
---
language:
  - zh
thumbnail: https://ckip.iis.sinica.edu.tw/files/ckip_logo.png
tags:
  - pytorch
  - token-classification
  - albert
  - zh
license: gpl-3.0
---

# CKIP ALBERT Base Chinese

This project provides traditional Chinese transformers models (including ALBERT, BERT, GPT2) and NLP tools (including word segmentation, part-of-speech tagging, named entity recognition).

這個專案提供了繁體中文的 transformers 模型(包含 ALBERT、BERT、GPT2)及自然語言處理工具(包含斷詞、詞性標記、實體辨識)。

## Homepage

- https://github.com/ckiplab/ckip-transformers

## Contributers

- [Mu Yang](https://muyang.pro) at [CKIP](https://ckip.iis.sinica.edu.tw) (Author & Maintainer)

## Usage

Please use BertTokenizerFast as tokenizer instead of AutoTokenizer.

請使用 BertTokenizerFast 而非 AutoTokenizer。

```
from transformers import (
  BertTokenizerFast,
  AutoModel,
)

tokenizer = BertTokenizerFast.from_pretrained('bert-base-chinese')
model = AutoModel.from_pretrained('ckiplab/albert-base-chinese-ner')
```

For full usage and more information, please refer to https://github.com/ckiplab/ckip-transformers.

有關完整使用方法及其他資訊,請參見 https://github.com/ckiplab/ckip-transformers 。