File size: 2,489 Bytes
5fd45b5 5af4f5a 5fd45b5 0424398 5fd45b5 0424398 5af4f5a 5fd45b5 5af4f5a 0424398 5af4f5a 5fd45b5 e3f91a9 5fd45b5 0424398 5fd45b5 0424398 5fd45b5 0424398 3bfd46c 5fd45b5 0424398 5fd45b5 3bfd46c 0424398 3bfd46c 5fd45b5 0424398 5fd45b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
---
language:
- tr
license: apache-2.0
tags:
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
base_model: openai/whisper-small
model-index:
- name: Whisper Small Tr - Canberk Kandemir
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: Common Voice 11.0
type: mozilla-foundation/common_voice_11_0
config: tr
split: None
args: 'config: tr, split: test'
metrics:
- type: wer
value: 43.06339873086104
name: Wer
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Small Tr
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5432
- Wer: 43.0634
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- training_steps: 5000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.4399 | 0.44 | 500 | 0.6307 | 61.0351 |
| 0.4322 | 0.89 | 1000 | 0.6820 | 58.6909 |
| 0.2857 | 1.33 | 1500 | 0.6496 | 54.3867 |
| 0.2839 | 1.77 | 2000 | 0.6088 | 49.6497 |
| 0.1467 | 2.21 | 2500 | 0.5813 | 47.3346 |
| 0.1268 | 2.66 | 3000 | 0.5647 | 46.1315 |
| 0.0711 | 3.1 | 3500 | 0.5532 | 44.8196 |
| 0.0658 | 3.54 | 4000 | 0.5444 | 43.4670 |
| 0.0601 | 3.99 | 4500 | 0.5372 | 43.4146 |
| 0.0304 | 4.43 | 5000 | 0.5432 | 43.0634 |
### Framework versions
- Transformers 4.37.2
- Pytorch 2.1.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.2
|