File size: 1,557 Bytes
c769b40 dd41067 c769b40 c1fb75b 89a846e c769b40 6337b65 2cf2398 eb59026 07aaf0e 6337b65 82c0d3e 6337b65 eef9733 6337b65 9dc4d19 6337b65 cff8bc2 df1521a 083a5a6 df1521a 083a5a6 d69bd00 083a5a6 d69bd00 083a5a6 ed15c9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
language: en
datasets:
- wnut_17
license: mit
metrics:
- f1
widget:
- text: "Manchester played Liverpool last night in London."
example_title: "Metonyms"
- text: "i live in brum - slang for birmingham"
example_title: "Slang / informal text"
---
# Reddit NER for place names
Fine-tuned `bert-base-uncased` for named entity recognition, trained using `wnut_17` with 498 additional comments from Reddit. This model is intended solely for place name extraction from social media text, other entities have therefore been removed.
This model was created with two key goals:
1. Improved NER results on social media
2. Target only place names
In theory this model should be able to detect and ignore metonyms. For example in the sentence:
`Manchester played Liverpool last night in London.`
Both Manchester and Liverpool refer to football teams, therefore the model outputs:
`[
{
"entity_group": "location",
"score": 0.99784255027771,
"word": "london",
"start": 42,
"end": 48
}
]`
## Use in `transformers`
```python
from transformers import pipeline
generator = pipeline(
task="ner",
model="cjber/reddit-ner-place_names",
tokenizer="cjber/reddit-ner-place_names",
aggregation_strategy="first",
)
out = generator("I live north of liverpool in Waterloo")
```
Out gives:
```python
[{'entity_group': 'location',
'score': 0.94054973,
'word': 'liverpool',
'start': 16,
'end': 25},
{'entity_group': 'location',
'score': 0.99520856,
'word': 'waterloo',
'start': 29,
'end': 37}]
``` |