File size: 1,456 Bytes
b9a8d84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
---
tags: autotrain
language: unk
widget:
- text: "I love AutoTrain 🤗"
datasets:
- cjbarrie/autotrain-data-masress-medcrit-binary-5
co2_eq_emissions: 0.01017487638098474
---

# Model Trained Using AutoTrain

- Problem type: Multi-class Classification
- Model ID: 937130980
- CO2 Emissions (in grams): 0.01017487638098474

## Validation Metrics

- Loss: 0.757265031337738
- Accuracy: 0.7551020408163265
- Macro F1: 0.7202470830473576
- Micro F1: 0.7551020408163265
- Weighted F1: 0.7594301962377263
- Macro Precision: 0.718716577540107
- Micro Precision: 0.7551020408163265
- Weighted Precision: 0.7711448215649895
- Macro Recall: 0.7285714285714286
- Micro Recall: 0.7551020408163265
- Weighted Recall: 0.7551020408163265


## Usage

You can use cURL to access this model:

```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/cjbarrie/autotrain-masress-medcrit-binary-5-937130980
```

Or Python API:

```
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model = AutoModelForSequenceClassification.from_pretrained("cjbarrie/autotrain-masress-medcrit-binary-5-937130980", use_auth_token=True)

tokenizer = AutoTokenizer.from_pretrained("cjbarrie/autotrain-masress-medcrit-binary-5-937130980", use_auth_token=True)

inputs = tokenizer("I love AutoTrain", return_tensors="pt")

outputs = model(**inputs)
```