|
--- |
|
base_model: unsloth/gemma-2-2b-it-bnb-4bit |
|
language: |
|
- en |
|
license: apache-2.0 |
|
tags: |
|
- text-generation-inference |
|
- transformers |
|
- unsloth |
|
- gemma2 |
|
- trl |
|
- sft |
|
datasets: |
|
- Clinton/Text-to-sql-v1 |
|
--- |
|
|
|
# Uploaded model |
|
|
|
- **Developed by:** circlelee |
|
- **License:** apache-2.0 |
|
- **Finetuned from model :** unsloth/gemma-2-2b-it-bnb-4bit |
|
|
|
This gemma2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. |
|
|
|
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth) |
|
|
|
|
|
|
|
|
|
|
|
|
|
## Model Information |
|
|
|
Summary description and brief definition of inputs and outputs. |
|
|
|
### Description |
|
|
|
This model is based on Gemma2 and is fine-tuned to generate SQL from Natural Language. |
|
|
|
### Usage |
|
|
|
Below we share some code snippets on how to get quickly started with running the model. First, install the Transformers library with: |
|
```sh |
|
pip install -U transformers |
|
... |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
model = AutoModelForCausalLM.from_pretrained("circlelee/gemma-2-2b-it-nl2sql") |
|
tokenizer = AutoTokenizer.from_pretrained("circlelee/gemma-2-2b-it-nl2sql", trust_remote_code=True) |
|
|
|
table_schemas = "CREATE TABLE person ( name VARCHAR, age INTEGER, address VARCHAR )" |
|
user_query = "people whoes ages are older than 27 and name starts with letter 'k'" |
|
messages = [ |
|
{"role": "user", "content": f"""Use the below SQL tables schemas paired with instruction that describes a task. make SQL query that appropriately completes the request for the provided tables. And make SQL query according the steps. |
|
{table_schemas} |
|
step 1. check columns that I want. |
|
step 2. check condition that I want. |
|
step 3. make SQL query to get every information that I want. |
|
|
|
{user_query} |
|
"""} |
|
] |
|
|
|
formated_messages = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True, return_tensors="pt") |
|
input_ids = tokenizer(formated_messages, return_tensors="pt") |
|
|
|
outputs = model.generate(**input_ids, max_new_tokens=64) |
|
print(tokenizer.decode(outputs[0])) |
|
``` |
|
|