File size: 3,230 Bytes
eeeb81d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
---
license: apache-2.0
base_model: distilbert/distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: spillage-distilbert-base-uncased
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# spillage-distilbert-base-uncased
This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.0785
- Accuracy: 0.6199
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 70
- eval_batch_size: 70
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 23 | 1.3515 | 0.1956 |
| No log | 2.0 | 46 | 1.2029 | 0.4133 |
| No log | 3.0 | 69 | 1.0942 | 0.5092 |
| No log | 4.0 | 92 | 0.9780 | 0.5793 |
| No log | 5.0 | 115 | 0.9581 | 0.5609 |
| No log | 6.0 | 138 | 1.0374 | 0.5756 |
| No log | 7.0 | 161 | 1.0257 | 0.5941 |
| No log | 8.0 | 184 | 1.0842 | 0.5941 |
| No log | 9.0 | 207 | 1.1494 | 0.6052 |
| No log | 10.0 | 230 | 1.2238 | 0.6273 |
| No log | 11.0 | 253 | 1.2607 | 0.6421 |
| No log | 12.0 | 276 | 1.3324 | 0.6052 |
| No log | 13.0 | 299 | 1.5093 | 0.6199 |
| No log | 14.0 | 322 | 1.5016 | 0.6273 |
| No log | 15.0 | 345 | 1.6022 | 0.6384 |
| No log | 16.0 | 368 | 1.6277 | 0.6273 |
| No log | 17.0 | 391 | 1.7488 | 0.6384 |
| No log | 18.0 | 414 | 1.9428 | 0.6273 |
| No log | 19.0 | 437 | 1.8673 | 0.6273 |
| No log | 20.0 | 460 | 1.8853 | 0.6273 |
| No log | 21.0 | 483 | 1.9610 | 0.6347 |
| 0.2882 | 22.0 | 506 | 1.9328 | 0.6310 |
| 0.2882 | 23.0 | 529 | 1.9462 | 0.6421 |
| 0.2882 | 24.0 | 552 | 1.9936 | 0.6236 |
| 0.2882 | 25.0 | 575 | 2.0169 | 0.6236 |
| 0.2882 | 26.0 | 598 | 2.0216 | 0.6347 |
| 0.2882 | 27.0 | 621 | 2.0617 | 0.6310 |
| 0.2882 | 28.0 | 644 | 2.0578 | 0.6199 |
| 0.2882 | 29.0 | 667 | 2.0661 | 0.6236 |
| 0.2882 | 30.0 | 690 | 2.0785 | 0.6199 |
### Framework versions
- Transformers 4.42.4
- Pytorch 2.3.0
- Datasets 2.20.0
- Tokenizers 0.19.1
|