File size: 2,642 Bytes
97e69d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dae15a6
 
97e69d3
 
 
dae15a6
 
 
 
 
 
97e69d3
 
 
9c3785c
dae15a6
 
 
 
 
 
 
 
514ac9c
 
dae15a6
514ac9c
 
 
 
 
97e69d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2905c34
 
 
 
97e69d3
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
license: apache-2.0
base_model: KETI-AIR/ke-t5-base
tags:
- generated_from_trainer
model-index:
- name: ke_t5_base_bongsoo_ko_en
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# ke_t5_base_bongsoo_ko_en

This model is a fine-tuned version of [KETI-AIR/ke-t5-base](https://huggingface.co/KETI-AIR/ke-t5-base) 
on a [bongsoo/news_news_talk_en_ko](https://huggingface.co/datasets/bongsoo/news_talk_ko_en) dataset.

## Model description

KE-T5 is a pretrained-model of t5 text-to-text transfer transformers 
using the Korean and English corpus developed by KETI (ν•œκ΅­μ „μžμ—°κ΅¬μ›).
The vocabulary used by KE-T5 consists of 64,000 sub-word tokens 
and was created using Google's sentencepiece. 
The Sentencepiece model was trained to cover 99.95% of a 30GB corpus 
with an approximate 7:3 mix of Korean and English.

## Intended uses & limitations

Translation from Korean to English   epoch = 1
## Usage

You can use this model directly with a pipeline for translation language modeling:

```python
>>> from transformers import pipeline
>>> translator = pipeline('translation', model='chunwoolee0/ke_t5_base_bongsoo_en_ko')

>>> translator("λ‚˜λŠ” μŠ΅κ΄€μ μœΌλ‘œ 점심식사 후에 산책을 ν•œλ‹€.")
[{'translation_text': 'I habitually go to walk after lunch'}]

>>> translator("이 κ°•μ’ŒλŠ” ν—ˆκΉ…νŽ˜μ΄μŠ€κ°€ λ§Œλ“  κ±°μ•Ό.")
[{'translation_text': 'This class was created by Huggface.'}]

>>> translator("μ˜€λŠ˜μ€ 늦게 일어났닀.")
[{'translation_text': 'This day, I went late.'}]

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step | Validation Loss | Bleu    |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| No log        | 1.0   | 5625 | 1.6845          | 12.2087 |

TrainOutput(global_step=5625, training_loss=2.831754861111111,
metrics={'train_runtime': 12144.6206, 'train_samples_per_second': 29.643,
'train_steps_per_second': 0.463, 'total_flos': 2.056934156746752e+16,
'train_loss': 2.831754861111111, 'epoch': 1.0})

### Framework versions

- Transformers 4.32.1
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3