File size: 3,964 Bytes
f2db82d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
---
tags:
- generated_from_trainer
datasets:
- common_voice
metrics:
- wer
model-index:
- name: wavlm-base-plus_zh_tw_ver2
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: common_voice
      type: common_voice
      config: zh-TW
      split: test
      args: zh-TW
    metrics:
    - name: Wer
      type: wer
      value: 1.0
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wavlm-base-plus_zh_tw_ver2

This model is a fine-tuned version of [microsoft/wavlm-base-plus](https://huggingface.co/microsoft/wavlm-base-plus) on the common_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 6.5278
- Wer: 1.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 7.5e-05
- train_batch_size: 32
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2000
- num_epochs: 100.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Wer |
|:-------------:|:-----:|:-----:|:---------------:|:---:|
| 82.628        | 2.5   | 500   | 79.5587         | 1.0 |
| 17.5635       | 5.0   | 1000  | 11.5929         | 1.0 |
| 6.4288        | 7.5   | 1500  | 6.4475          | 1.0 |
| 6.4092        | 10.0  | 2000  | 6.4579          | 1.0 |
| 6.3982        | 12.5  | 2500  | 6.4662          | 1.0 |
| 6.391         | 15.0  | 3000  | 6.4655          | 1.0 |
| 6.4097        | 17.5  | 3500  | 6.4691          | 1.0 |
| 6.3986        | 20.0  | 4000  | 6.4702          | 1.0 |
| 6.4069        | 22.5  | 4500  | 6.4761          | 1.0 |
| 6.4158        | 25.0  | 5000  | 6.4750          | 1.0 |
| 6.4117        | 27.5  | 5500  | 6.4816          | 1.0 |
| 6.4086        | 30.0  | 6000  | 6.4806          | 1.0 |
| 6.3992        | 32.5  | 6500  | 6.4872          | 1.0 |
| 6.3946        | 35.0  | 7000  | 6.4866          | 1.0 |
| 6.4212        | 37.5  | 7500  | 6.4895          | 1.0 |
| 6.4051        | 40.0  | 8000  | 6.4926          | 1.0 |
| 6.398         | 42.5  | 8500  | 6.5015          | 1.0 |
| 6.3967        | 45.0  | 9000  | 6.4960          | 1.0 |
| 6.4096        | 47.5  | 9500  | 6.5003          | 1.0 |
| 6.4068        | 50.0  | 10000 | 6.5026          | 1.0 |
| 6.4062        | 52.5  | 10500 | 6.5071          | 1.0 |
| 6.395         | 55.0  | 11000 | 6.5066          | 1.0 |
| 6.4079        | 57.5  | 11500 | 6.5093          | 1.0 |
| 6.411         | 60.0  | 12000 | 6.5106          | 1.0 |
| 6.4023        | 62.5  | 12500 | 6.5112          | 1.0 |
| 6.4053        | 65.0  | 13000 | 6.5143          | 1.0 |
| 6.4103        | 67.5  | 13500 | 6.5172          | 1.0 |
| 6.3899        | 70.0  | 14000 | 6.5182          | 1.0 |
| 6.4054        | 72.5  | 14500 | 6.5197          | 1.0 |
| 6.391         | 75.0  | 15000 | 6.5200          | 1.0 |
| 6.3988        | 77.5  | 15500 | 6.5220          | 1.0 |
| 6.4059        | 80.0  | 16000 | 6.5228          | 1.0 |
| 6.392         | 82.5  | 16500 | 6.5233          | 1.0 |
| 6.3947        | 85.0  | 17000 | 6.5253          | 1.0 |
| 6.3966        | 87.5  | 17500 | 6.5259          | 1.0 |
| 6.3905        | 90.0  | 18000 | 6.5264          | 1.0 |
| 6.4003        | 92.5  | 18500 | 6.5272          | 1.0 |
| 6.3877        | 95.0  | 19000 | 6.5275          | 1.0 |
| 6.3903        | 97.5  | 19500 | 6.5277          | 1.0 |
| 6.3944        | 100.0 | 20000 | 6.5278          | 1.0 |


### Framework versions

- Transformers 4.28.0.dev0
- Pytorch 1.12.0+cu102
- Datasets 2.10.1
- Tokenizers 0.13.2