File size: 2,343 Bytes
3d9997d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
license: mit
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: clickbait_binary_detection_DeBERTa
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# clickbait_binary_detection_DeBERTa
This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7269
- Macro F1: 0.9010
- Micro F1: 0.9069
- Accuracy: 0.9069
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-06
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Macro F1 | Micro F1 | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:|:--------:|
| 0.2692 | 1.0 | 5475 | 0.2676 | 0.9051 | 0.9142 | 0.9142 |
| 0.2492 | 2.0 | 10951 | 0.3331 | 0.9078 | 0.9156 | 0.9156 |
| 0.2189 | 3.0 | 16426 | 0.3909 | 0.9107 | 0.9169 | 0.9169 |
| 0.1769 | 4.0 | 21902 | 0.3799 | 0.9114 | 0.9178 | 0.9178 |
| 0.1479 | 5.0 | 27377 | 0.5103 | 0.8980 | 0.9032 | 0.9032 |
| 0.108 | 6.0 | 32853 | 0.5215 | 0.9123 | 0.9183 | 0.9183 |
| 0.0957 | 7.0 | 38328 | 0.6549 | 0.8974 | 0.9028 | 0.9028 |
| 0.0773 | 8.0 | 43804 | 0.6768 | 0.9044 | 0.9101 | 0.9101 |
| 0.0586 | 9.0 | 49279 | 0.6837 | 0.9023 | 0.9083 | 0.9083 |
| 0.0439 | 10.0 | 54750 | 0.7269 | 0.9010 | 0.9069 | 0.9069 |
### Framework versions
- Transformers 4.27.1
- Pytorch 2.0.1+cu118
- Datasets 2.9.0
- Tokenizers 0.13.3
|