File size: 2,056 Bytes
a14186b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
license: apache-2.0
tags:
- afro-digits-speech
datasets:
- crowd-speech-africa
metrics:
- accuracy
model-index:
- name: afrospeech-wav2vec-run
  results:
  - task:
      name: Audio Classification 
      type: audio-classification
    dataset:
      name: Afro Speech
      type: chrisjay/crowd-speech-africa
      args: no
    metrics:
       - name: Validation Accuracy
         type: accuracy
         value: 0.8
---


# afrospeech-wav2vec-run

This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the [crowd-speech-africa](https://huggingface.co/datasets/chrisjay/crowd-speech-africa), which was a crowd-sourced dataset collected using the [afro-speech Space](https://huggingface.co/spaces/chrisjay/afro-speech). It achieves the following results on the [validation set](VALID_rundi_run_audio_data.csv):

- F1: 0.8
- Accuracy: 0.8

The confusion matrix below helps to give a better look at the model's performance across the digits. Through it, we can see the precision and recall of the model as well as other important insights. 

![confusion matrix](afrospeech-wav2vec-run_confusion_matrix_VALID.png)


## Training and evaluation data

The model was trained on a mixed audio data from Rundi (`run`).

- Size of training set: 16
- Size of validation set: 5

Below is a distribution of the dataset (training and valdation) 

![digits-bar-plot-for-afrospeech](digits-bar-plot-for-afrospeech-wav2vec-run.png)


### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 64
- eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- num_epochs: 150

### Training results

| Training Loss | Epoch |  Validation Accuracy |
|:-------------:|:-----:|:--------:|
|0.00183        | 1    | 0.6  |
|0.0003991       | 50   | 0.8  |
| 0.0002174       | 100   | 0.6  |
|0.0043911       | 150   | 0.4  |



### Framework versions

- Transformers 4.21.3
- Pytorch 1.12.0
- Datasets 1.14.0
- Tokenizers 0.12.1