File size: 10,161 Bytes
8de5892
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
---
license: cc-by-nc-4.0
language:
- ro
base_model: OpenLLM-Ro/RoLlama3.1-8b-Instruct-2024-10-09
datasets:
- OpenLLM-Ro/ro_sft_alpaca
- OpenLLM-Ro/ro_sft_alpaca_gpt4
- OpenLLM-Ro/ro_sft_dolly
- OpenLLM-Ro/ro_sft_selfinstruct_gpt4
- OpenLLM-Ro/ro_sft_norobots
- OpenLLM-Ro/ro_sft_orca
- OpenLLM-Ro/ro_sft_camel
- OpenLLM-Ro/ro_sft_oasst
- OpenLLM-Ro/ro_sft_ultrachat
tags:
- llama-cpp
- gguf-my-repo
model-index:
- name: OpenLLM-Ro/RoLlama3.1-8b-Instruct-2024-10-09
  results:
  - task:
      type: text-generation
    dataset:
      name: RoMT-Bench
      type: RoMT-Bench
    metrics:
    - type: Score
      value: 5.42
      name: Score
    - type: Score
      value: 5.95
      name: First turn
    - type: Score
      value: 4.89
      name: Second turn
  - task:
      type: text-generation
    dataset:
      name: RoCulturaBench
      type: RoCulturaBench
    metrics:
    - type: Score
      value: 3.55
      name: Score
  - task:
      type: text-generation
    dataset:
      name: Romanian_Academic_Benchmarks
      type: Romanian_Academic_Benchmarks
    metrics:
    - type: accuracy
      value: 53.03
      name: Average accuracy
  - task:
      type: text-generation
    dataset:
      name: OpenLLM-Ro/ro_arc_challenge
      type: OpenLLM-Ro/ro_arc_challenge
    metrics:
    - type: accuracy
      value: 47.69
      name: Average accuracy
    - type: accuracy
      value: 42.76
      name: 0-shot
    - type: accuracy
      value: 46.44
      name: 1-shot
    - type: accuracy
      value: 48.24
      name: 3-shot
    - type: accuracy
      value: 48.84
      name: 5-shot
    - type: accuracy
      value: 49.36
      name: 10-shot
    - type: accuracy
      value: 50.47
      name: 25-shot
  - task:
      type: text-generation
    dataset:
      name: OpenLLM-Ro/ro_mmlu
      type: OpenLLM-Ro/ro_mmlu
    metrics:
    - type: accuracy
      value: 54.57
      name: Average accuracy
    - type: accuracy
      value: 52.95
      name: 0-shot
    - type: accuracy
      value: 54.62
      name: 1-shot
    - type: accuracy
      value: 55.54
      name: 3-shot
    - type: accuracy
      value: 55.17
      name: 5-shot
  - task:
      type: text-generation
    dataset:
      name: OpenLLM-Ro/ro_winogrande
      type: OpenLLM-Ro/ro_winogrande
    metrics:
    - type: accuracy
      value: 65.84
      name: Average accuracy
    - type: accuracy
      value: 64.4
      name: 0-shot
    - type: accuracy
      value: 66.14
      name: 1-shot
    - type: accuracy
      value: 65.75
      name: 3-shot
    - type: accuracy
      value: 67.09
      name: 5-shot
  - task:
      type: text-generation
    dataset:
      name: OpenLLM-Ro/ro_hellaswag
      type: OpenLLM-Ro/ro_hellaswag
    metrics:
    - type: accuracy
      value: 59.94
      name: Average accuracy
    - type: accuracy
      value: 59.07
      name: 0-shot
    - type: accuracy
      value: 59.26
      name: 1-shot
    - type: accuracy
      value: 60.41
      name: 3-shot
    - type: accuracy
      value: 60.18
      name: 5-shot
    - type: accuracy
      value: 60.77
      name: 10-shot
  - task:
      type: text-generation
    dataset:
      name: OpenLLM-Ro/ro_gsm8k
      type: OpenLLM-Ro/ro_gsm8k
    metrics:
    - type: accuracy
      value: 44.3
      name: Average accuracy
    - type: accuracy
      value: 35.1
      name: 1-shot
    - type: accuracy
      value: 47.01
      name: 3-shot
    - type: accuracy
      value: 50.8
      name: 5-shot
  - task:
      type: text-generation
    dataset:
      name: OpenLLM-Ro/ro_truthfulqa
      type: OpenLLM-Ro/ro_truthfulqa
    metrics:
    - type: accuracy
      value: 45.82
      name: Average accuracy
  - task:
      type: text-generation
    dataset:
      name: LaRoSeDa_binary
      type: LaRoSeDa_binary
    metrics:
    - type: macro-f1
      value: 94.56
      name: Average macro-f1
    - type: macro-f1
      value: 90.18
      name: 0-shot
    - type: macro-f1
      value: 94.45
      name: 1-shot
    - type: macro-f1
      value: 96.36
      name: 3-shot
    - type: macro-f1
      value: 97.27
      name: 5-shot
  - task:
      type: text-generation
    dataset:
      name: LaRoSeDa_multiclass
      type: LaRoSeDa_multiclass
    metrics:
    - type: macro-f1
      value: 60.1
      name: Average macro-f1
    - type: macro-f1
      value: 67.56
      name: 0-shot
    - type: macro-f1
      value: 63.21
      name: 1-shot
    - type: macro-f1
      value: 51.69
      name: 3-shot
    - type: macro-f1
      value: 57.95
      name: 5-shot
  - task:
      type: text-generation
    dataset:
      name: LaRoSeDa_binary_finetuned
      type: LaRoSeDa_binary_finetuned
    metrics:
    - type: macro-f1
      value: 95.12
      name: Average macro-f1
  - task:
      type: text-generation
    dataset:
      name: LaRoSeDa_multiclass_finetuned
      type: LaRoSeDa_multiclass_finetuned
    metrics:
    - type: macro-f1
      value: 87.53
      name: Average macro-f1
  - task:
      type: text-generation
    dataset:
      name: WMT_EN-RO
      type: WMT_EN-RO
    metrics:
    - type: bleu
      value: 21.88
      name: Average bleu
    - type: bleu
      value: 5.12
      name: 0-shot
    - type: bleu
      value: 26.99
      name: 1-shot
    - type: bleu
      value: 27.91
      name: 3-shot
    - type: bleu
      value: 27.51
      name: 5-shot
  - task:
      type: text-generation
    dataset:
      name: WMT_RO-EN
      type: WMT_RO-EN
    metrics:
    - type: bleu
      value: 23.99
      name: Average bleu
    - type: bleu
      value: 1.63
      name: 0-shot
    - type: bleu
      value: 22.59
      name: 1-shot
    - type: bleu
      value: 35.7
      name: 3-shot
    - type: bleu
      value: 36.05
      name: 5-shot
  - task:
      type: text-generation
    dataset:
      name: WMT_EN-RO_finetuned
      type: WMT_EN-RO_finetuned
    metrics:
    - type: bleu
      value: 28.27
      name: Average bleu
  - task:
      type: text-generation
    dataset:
      name: WMT_RO-EN_finetuned
      type: WMT_RO-EN_finetuned
    metrics:
    - type: bleu
      value: 40.44
      name: Average bleu
  - task:
      type: text-generation
    dataset:
      name: XQuAD
      type: XQuAD
    metrics:
    - type: exact_match
      value: 13.59
      name: Average exact_match
    - type: f1
      value: 23.56
      name: Average f1
  - task:
      type: text-generation
    dataset:
      name: XQuAD_finetuned
      type: XQuAD_finetuned
    metrics:
    - type: exact_match
      value: 49.41
      name: Average exact_match
    - type: f1
      value: 62.93
      name: Average f1
  - task:
      type: text-generation
    dataset:
      name: STS
      type: STS
    metrics:
    - type: spearman
      value: 75.89
      name: Average spearman
    - type: pearson
      value: 76.0
      name: Average pearson
  - task:
      type: text-generation
    dataset:
      name: STS_finetuned
      type: STS_finetuned
    metrics:
    - type: spearman
      value: 86.86
      name: Average spearman
    - type: pearson
      value: 87.05
      name: Average pearson
  - task:
      type: text-generation
    dataset:
      name: XQuAD_EM
      type: XQuAD_EM
    metrics:
    - type: exact_match
      value: 6.55
      name: 0-shot
    - type: exact_match
      value: 38.32
      name: 1-shot
    - type: exact_match
      value: 8.66
      name: 3-shot
    - type: exact_match
      value: 0.84
      name: 5-shot
  - task:
      type: text-generation
    dataset:
      name: XQuAD_F1
      type: XQuAD_F1
    metrics:
    - type: f1
      value: 16.04
      name: 0-shot
    - type: f1
      value: 56.16
      name: 1-shot
    - type: f1
      value: 15.64
      name: 3-shot
    - type: f1
      value: 6.39
      name: 5-shot
  - task:
      type: text-generation
    dataset:
      name: STS_Spearman
      type: STS_Spearman
    metrics:
    - type: spearman
      value: 76.27
      name: 1-shot
    - type: spearman
      value: 75.48
      name: 3-shot
    - type: spearman
      value: 75.92
      name: 5-shot
  - task:
      type: text-generation
    dataset:
      name: STS_Pearson
      type: STS_Pearson
    metrics:
    - type: pearson
      value: 76.76
      name: 1-shot
    - type: pearson
      value: 75.38
      name: 3-shot
    - type: pearson
      value: 75.87
      name: 5-shot
---

# chrisgru/RoLlama3.1-8b-Instruct-2024-10-09-Q8_0-GGUF
This model was converted to GGUF format from [`OpenLLM-Ro/RoLlama3.1-8b-Instruct-2024-10-09`](https://huggingface.co/OpenLLM-Ro/RoLlama3.1-8b-Instruct-2024-10-09) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/OpenLLM-Ro/RoLlama3.1-8b-Instruct-2024-10-09) for more details on the model.

## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)

```bash
brew install llama.cpp

```
Invoke the llama.cpp server or the CLI.

### CLI:
```bash
llama-cli --hf-repo chrisgru/RoLlama3.1-8b-Instruct-2024-10-09-Q8_0-GGUF --hf-file rollama3.1-8b-instruct-2024-10-09-q8_0.gguf -p "The meaning to life and the universe is"
```

### Server:
```bash
llama-server --hf-repo chrisgru/RoLlama3.1-8b-Instruct-2024-10-09-Q8_0-GGUF --hf-file rollama3.1-8b-instruct-2024-10-09-q8_0.gguf -c 2048
```

Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.

Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```

Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```

Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo chrisgru/RoLlama3.1-8b-Instruct-2024-10-09-Q8_0-GGUF --hf-file rollama3.1-8b-instruct-2024-10-09-q8_0.gguf -p "The meaning to life and the universe is"
```
or 
```
./llama-server --hf-repo chrisgru/RoLlama3.1-8b-Instruct-2024-10-09-Q8_0-GGUF --hf-file rollama3.1-8b-instruct-2024-10-09-q8_0.gguf -c 2048
```